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University of Bath and First National Bank of Chicago

Summary. The growing availability of complete market data makes it important to have
models which realistically describe the behaviour of such tick-by-tick datasets. We shall
propose here a general modelling framework for tick data, illustrating it with a number of
different specific choices which are reasonably tractable, and presenting estimation proce-
dures which perform effectively on simulated samples.

1. Introduction. The log-Brownian paradigm for share prices is now well established,
and has proven highly successful because of its simplicity and tractability. Anyone who has
ever worked with it, and considered market data, knows that every one of the assumptions
made in this model is open to question, and that it can be considered at best as a first
approximation to what is really going on. The assumption of continuous sample paths
with independent Gaussian increments appears to get less unrealistic as the time-intervals
considered get larger, mainly because of some Central Limit effect; but this means that on
shorter time scales, its deficiencies become even more marked, and this is especially true
in the extreme where one considers tick data, that is, data which records every quote, or
every trade. Such data is routinely available to financial houses and should in principle be
far more informative than just daily price figures, but it will of course be hard to extract
any added information if one insists on modelling it in a way which clearly fails to capture
the gross features of the situation.

What then are these gross features? To fix our ideas, let us suppose that we are
considering share quote data from a busy market 1 The first thing to remark is that the
quote data is essentially discrete. Quotes are posted one at a time, and each posted quote
carries a time at which it is posted, a price, and a quantity for sale or purchase. The
simplest conceivable model would assume that the times at which quotes are posted form
a Poisson process of some given intensity, and that the associated prices and quantities are
drawn independently from some distribution. Such a model is inevitably unsatisfactory,
because of the observed fact that the markets are generally much busier at certain times
of day than at others. So we could assume that the Poisson process of times has a non-
constant intensity; the simplest thing we could do is to assume that the intensity is a
deterministic function of time, rising and falling in line with the historic intra-day level of
market activity. However, this also is too simple-minded; such a model would mean that
changes in prices of different shares would always be uncorrelated. So we have to allow a
non-constant stochastic intensity for the process of times at which quotes are posted.

1 We could as well be considering data on actual trades, or data on foreign exchange;
the qualitative features will be broadly similar, and quote data has at least the merit of
being more readily available than data on the trades themselves. We would model such
trade data in a similar fashion to that discussed for quotes.
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We also need to choose a stochastic intensity to model another gross feature of the
data, which is that activity in shares tends to be bursty; there will be periods when, because
of incoming news, the activity in a given share will increase, and this will persist for some
time before settling back to a lower ‘background’ level. The way we propose to model this
stochastic intensity is to suppose that there is some underlying Markov process, and that
the intensities of different share quote processes are functions of this Markov process. In
Section 2, we shall develop some of the theory of such models, concentrating particularly
on expressions for means and covariances of readily-updated functionals of the history,
under the assumption that the Markov process is ergodic. This simplifying assumption is
probably innocent in most applications, and certainly makes the development a lot easier.
In Section 3, we shall discuss the estimation of three particularly simple models. Working
from simulated data, we tested the proposed simulation method, and the closeness of the
estimates to the true values was encouraging.

Thus far, we have said little about the modelling and estimation of the sizes and prices
of quotes. This is because we shall decouple the two problems by assuming that the sizes
and prices are driven by a random mechanism independent of the process of times. This
may seem a brave assumption, but some simple-minded analysis of share data from the
London Stock Exchange showed rather surprisingly that during periods when an individual
share was trading at increased levels of activity, there seemed to be no tendency for the
share to be moving clearly up or clearly down. Of course, there will be situations (where
some particularly adverse piece of news has been disclosed) when there will be a clear
direction to the price moves, but it appears that this is not common. So we shall make
the modelling simpler by this assumption; the results of Tauchen & Pitts [18] give some
support to this assumption. The features of size and price which we will incorporate are
that there should be some underlying ‘notional’ price process, and the quotes are scattered
around that in some way. In particular, quotes for large quantities are likely to be quite
keenly priced, close to the notional, as small quotes are often posted as a way of generating
trade, or testing the mood of the market, but big quotes mispriced cost money. For a very
liquid asset, we could probably dispense with the need to have some underlying ‘notional’
price process, basing the new quotes on recent history, but to be able to handle a situation
where the asset is not very frequently traded, we must allow for the underlying price to be
evolving even though no trades are taking place; if it is two days since there was any activity
in a minor share, we have to be prepared for the possibility that the share has changed
in value even though there were no quotes available to make this visible. We develop one
simple example of such a model in Section 4, and present an estimation method for it.

The final (and probably most important) issue in tick-data modelling is to understand
the implications of the chosen model for pricing and hedging. We must return to this on
another occasion, though we report elsewhere [13] some results on a simplified parody of
the models discussed here which serves as a first study on liquidity effects. The models
studied here are of course incomplete-market models, which are by their nature hard to
work with; there seem to be no models of incomplete markets where one can say much in
closed form about pricing and hedging. But there is another feature of these models which
sets them apart from other types of market incompleteness (such as stochastic volatility,
or transactions costs), namely, that in the current models it is not possible to choose any
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portfolio you wish at any time; this feature wipes out arbitrage-pricing theory.
An excellent recent overview of the state of research into high-frequency data has

been given by Goodhart & O’Hara [8]. As is clear from that article, there is a diversity of
approaches to the topic, and relatively little that can be considered conclusively proven.
Some researchers (for example, Kyle [9], Glosten & Milgrom [7], Easley & O’Hara [4], [5],
Admati & Pfleiderer [1], [2]) try to explain the formation of prices by modelling the different
information of market participants. This approach has considerable intellectual appeal, but
seems to be hard to convert into closed-form solutions. The situation is analogous to the
pricing of shares by way of a log-Brownian motion; the possible equilibrium justification of
such an assumption may be rather difficult, but it certainly allows for fruitful conclusions.
Similarly, the approach we take here makes no claims to the high ground of economic
theory, but does attempt to model simply the principal features which any high-frequency
data model should include.

Another approach (surveyed by Bollerslev, Chou, & Kroner [3]) is to model the price
process by some form of GARCH/ARCH process; this should be considered as a fitting ex-
ercise, rather than an attempt to explain economic fundamentals. The standard GARCH
framework has difficulty in dealing with the different times between trades which char-
acterise high-frequency data, though the recent paper of Engle & Russell [6] proposes a
GARCH-type model of the times between trades for a share. Quite how such a modelling
framework may deal with many shares at once is not clear to us. Recent work of Rydberg
& Shephard [17] studies stochastic intensity models for tick data, and analyses all trades of
IBM stock on the NYSE in 1995. The class of processes of times of trades for a single share
which they consider is similar to ours, but the model for movement of prices is different, in
that they assume that the price jumps are independent with a common distribution. This
assumption makes it harder to explain the observation of Roll [16] that there is negative
correlation between successive prices.

2. Stochastic-intensity point process models. The aim of this Section is to present
a wide class of stochastic-intensity models for the point process of times of quotes, and to
develop this theory far enough to derive expressions for means of functionals of the point
process which are very simple to update, and can therefore form the basis for a dynamic
estimation procedure, using a generalised method of moments approach.

Underlying everything will be a Markov process X 2 , which we shall assume to be
stationary and ergodic, with invariant distribution π. Next we take standard 3 Poisson
processes Ñ1, . . . ÑK independent of X , and consider the counting processes

(1) N i
t ≡ Ñ i(

∫ t

0

fi(Xs)ds), i = 1, . . . , K,

2 Basic facts and definitions about Markov processes are covered in various texts, for
example, Rogers & Williams [10], and we refer the reader there for any unexplained
terminology.

3 That is, the number of points of the point process which occur in an interval of length
h is Poisson with mean h, and the numbers of points occurring in disjoint intervals are
independent.
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where the functions fi are bounded and non-negative 4 . The process N i is our model for
the times at which quotes for the ith share are posted. If we are observing the market
and trying to estimate parameters of some model, our estimates necessarily change (albeit
slowly) as time passes, and it is clearly impractical to use estimation procedures which
require frequent review of the entire history of the share so far. We therefore propose to
concentrate on simple functionals of the share history, which are easy to update:

Y it (α) ≡
∫ t

−∞

αeα(s−t)dN i
s,(2)

ηijt (α, β) ≡
∫ t

−∞

αeα(s−t)Y js−(β)dN
i
s.(3)

ξijkt (α, β, γ) =

∫ t

−∞

αeα(s−t)Y js−(β)Y
k
s−(γ)dN

i
s(4)

The parameters α, β and γ are positive. There may be benefit in considering other
functionals, but these are good enough to be starting with, and are certainly easy to update;
the processes Y i(α), ηij(α, β) and ξijk(α, β, γ) decay exponentially between quotes, and
when a new quote comes in they jump up again, by α in the case of Y i, by αY jt−(β) in

the case of ηij , and by αY jt−(β)Y
k
t−(γ) in the case of ξijk. Thus with suitable choice of the

parameters, some finite collection {Y i, ηij, ξijk, i, j, k = 1, . . . , K} is sufficient to update
itself.

Let us introduce the abbreviated notation (π, g) ≡
∫

g(x)π(dx), the integration taking
place over the statespace of the Markov process X . The first result we need is the following.

PROPOSITION 1.

EY i0 (α) = (π, fi)(5)

Eηij0 (α, β) = β(π, fjRβfi)(6)

Eξijk0 (α, β, γ) = βγ
[

(π, fkRγfjRβ+γfi) + (π, fjRβfkRβ+γfi)(7)

+ δjk(π, fjRβ+γfi)
]

Proof. See Appendix.

Remarks. The approach of the proof of Proposition 1 yields expressions for higher mo-
ments. We record here a few higher moments which are useful in computing the covariance
of the various quantities:

EY i0 (α)Y
j
0 (β) =

αβ

α+ β
(π, δijfi + fiRαfj + fjRβfi)(8)

4 The functions fi only need to satisfy mild integrability conditions to guarantee that
later expressions are finite-valued; it is certainly sufficient that each fi is bounded, but that
is far from necessary. Rather than try to give sufficient conditions of broad applicability,
we shall leave the integrability check to the user in each application.
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Eηij0 (α, β)Y k0 (γ) =
αβγ

α+ γ
(π, fjRβfiRαfk + fjRβfkRγ+βfi(9)

+ fkRγfjRγ+βfi + δikfjRβfk + δjkfkRγ+βfi)

Eηij0 (α, β)ηkl0 (λ, µ) =
αβλµ

α+ λ
(π, flRµfkRλfjRλ+βfi + flRµfjRβ+µfkRλ+βfi(10)

+ fjRβflRβ+µfkRλ+βfi + fjRβfiRαflRα+µfk

+ fjRβflRβ+µfiRα+µfk + flRµfjRβ+µfiRα+µfk

+ δikδjlflRβ+µfi + δilfjRβfiRα+µfk + δjkflRµfjRβ+λfi

+ δik{flRµfjRβ+µfi + fjRβflRβ+µfi}
+ δjl{flRβ+µfkRλ+βfi + flRβ+µfiRα+µfk})

where (Rλ)λ>0 is the resolvent of X , and δij is the Kronecker delta, 1 if i = j and 0 else.

From a practical point of view, it is very easy to keep the updated values of the Y i, ηij

and ξijk if one has a real-time data-feed; in order to make use of these for estimation, we
shall need to have explicit forms for the moments (5)-(7) for the particular example under
consideration, and in the rest of this Section, we give three examples where (5)-(7) can
be evaluated explicitly: in some cases, we can make progress in evaluating (9) and (10),
but the expressions quickly become unmanageable, and are best handled with an algebra
manipulation package.

Example 1: finite Markov chain. If the Markov process is a finite-state chain with state-
space F and jump-rate matrix Q, then we may consider the function fi : F → R

+ as the
vector (fi(x))x∈F , and in this identification, the resolvent Rα acts as multiplication by the
matrix (α−Q)−1. The expressions (5)-(7) are immediately evaluated by substitution.

In the next Section, we shall study the simplest possible case of a single share and a
Markov chain on the two states 0 and 1 as the underlying Markov process. The behaviour
of the share is determined by four parameters: f(0), f(1), q0 ≡ q01 and q1 ≡ q10. We
shall demonstrate the feasibility of estimation in this context. For this particularly simple
chain, the expressions (4)–(5) are not hard to evaluate in closed form: we obtain

E Y0(α) =
q1f0 + q0f1
q0 + q1

E η0(α, β) =
q1f0

2(β + q1) + 2 q1f0q0f1 + q0f1
2(β + q0)

(q0 + q1) (β + q1 + q0)

Introducing the moments mk ≡ (q1f
k
0 + q0f

k
1 )/(q1 + q0) of the invariant law, and the

shorthand τ ≡ q0 + q1 for the trace of Q, we have more compactly the expressions

E Y0(α) = m1(11)

E η0(α, β) =
τm2

1 + βm2

β + τ
(12)

(π, fRβfRαf) =
τ2m3

1 + αβm3 + (α+ β)τm1m2

αβ(α+ τ)(β + τ)
(13)
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(π, fRµfRλfRβf) =

=
τ4m4

1 +m4µλβτ + µβτ2m2
2 + (λ+ β + µ)m2

1m2τ
3 + λ(β + µ)τ2m1m3

λβµτ(λ+ τ)(µ+ τ)(β + τ)
(14)

These expressions allow one to build up the values (5)–(10) of the first few moments of the
estimation functionals Y and η.

Note that though a Markov chain is a simple process, it may not be ideal for modelling
in that if it has more than a very few states, the jump-rate matrix Q will have a large
number of entries, and these will typically be very hard to estimate reliably.

Example 2: Ornstein-Uhlenbeck process. As another example, we take the underlying
Markov process to be the n-dimensional Ornstein-Uhlenbeck process which is the solution
to

dXt = dWt −BXtdt,

whereW is a standard n-dimensional Brownian motion, and B is an n×n matrix which we
assume without much loss of generality to be diagonal, B = diag(bi), and positive definite.
At this level of generality, we shall take the functions fi to be non-negative quadratic forms
fi(x) ≡ (x−ci)·Ki(x−ci). This family of examples is just about tractable using an algebra
manipulator such as Maple or Mathematica, but the formulae which result are not worth
writing down; one simply converts them into their Fortran or C equivalents and embeds
them in a program designed to do all the hard work. The point is that the operator λ−G
acts on the space of polynomials as a linear operator, whose inverse may also be expressed
as a linear operator, and this allows the expressions appearing in (5)–(10) above to be
computed.

To illustrate this, we reduce to the situation n = 1, which is studied in depth in
the next section. The expressions (5)–(10) are needed in the estimation procedure, and
to evaluate them, we shall need to take expectations of polynomials of degree up to 8
in the variable X0, which has a N(0, 1/(2b)) distribution. If we identify the polynomial

p(x) ≡
∑8
r=0 arx

r with the vector (a0, a1, . . . , a8)
T , then the operator λ − G acts as the

matrix



























λ 0 −1 0 0 0 0 0 0
0 λ+ b 0 −3 0 0 0 0 0
0 0 λ+ 2 b 0 −6 0 0 0 0
0 0 0 λ+ 3 b 0 −10 0 0 0
0 0 0 0 λ+ 4 b 0 −15 0 0
0 0 0 0 0 λ+ 5 b 0 −21 0
0 0 0 0 0 0 λ+ 6 b 0 −28
0 0 0 0 0 0 0 λ+ 7 b 0
0 0 0 0 0 0 0 0 λ+ 8 b



























whose inverse is also upper triangular, and can be easily computed with Maple.
We can likewise express the action of multiplying a polynomial of degree at most 6 by

the quadratic θ0 + θ1x+ θ2x
2 by way of the matrix
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

























θ0 0 0 0 0 0 0 0 0
θ1 θ0 0 0 0 0 0 0 0
θ2 θ1 θ0 0 0 0 0 0 0
0 θ2 θ1 θ0 0 0 0 0 0
0 0 θ2 θ1 θ0 0 0 0 0
0 0 0 θ2 θ1 θ0 0 0 0
0 0 0 0 θ2 θ1 θ0 0 0
0 0 0 0 0 θ2 θ1 θ0 0
0 0 0 0 0 0 θ2 θ1 θ0



























Taking expectations with respect to the invariant measure is equivalent to taking the
inner product with the vector

(1, 0,
1

2b
, 0,

3

4b2
, 0,

15

8b3
, 0,

105

16b4
)

Using these components, it is possible with patience to build up the expressions (5)–
(10). We obtain

EY0(α) = Kc2 +
K

2b

Eη0(α, β) =

(

(2 b+ 3 β) (β + b) + 4 b (b+ 3 β) (β + 2 b) c2 + 4 b2 (β + b) (β + 2 b) c4
)

K2

4b2 (β + b) (β + 2 b)

We also need for the computation of the covariance of η0(α, β) and Y0(γ) expressions of
the form

(π, fRαfRβf) =
[

(β + b) (α+ b) (4 b2 + 6α b+ 6 β b+ 15 β α) + 2b(45 β2 α2 + 87 b β α2

+ 169 b2 β α + 12 b4 + 38 b3 α+ 18α2 b2 + 87 b β2 α+ 38 b3 β

+ 18 β2 b2)c2 + 4 b2 (β + 2 b) (α+ 2 b) (3 b2 + 7α b+ 7 β b+ 15 β α) c4

+ 8 b3 (β + b) (β + 2 b) (α+ b) (α+ 2 b) c6
]

K3 .

[

8α (α+ 2 b) β b3 (α+ b)(β + b) (β + 2 b)
]−1

The expression for (π, fRαfRβfRλf) which results is too lengthy to be worth writing
down here.

For the multidimensional situation, the analysis is much more involved, and the di-
mension of the problem quickly becomes prohibitive (there are 120 different terms of the
form xn1

1 xn2

2 xn3

3 when n1 + n2 + n3 = 8, for example) but we shall discuss a ‘full’ version
of the estimation procedure below, as well as a ‘quick-and-dirty’ version, and we shall see
that the latter really does quite well.

Example 3: A simple interacting system. Though this example is a special case of Example
1, its additional structure makes it possible to analyse further. We take a continuous-time
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Markov chain with statespace I = {0, 1}N , an element x = (x1, x2, . . . , xN ) ∈ I being
thought of as a listing of the states of N shares, where we interpret xi = 1 to mean that
share i is excited, and xi = 0 to mean that share i is quiet. We suppose that each excited
share becomes quiet at rate µ, and that the invariant distribution of the chain is given by

π(x) ∝ exp
[

1
2
b
∑∑

i6=j

xixj + a
∑

i

xi

]

,

where a and b are constants. Assuming reversibility, we are able to deduce the rates at
which shares become excited; if xi = x′i for all i 6= j, and 0 = xj < x′j = 1, we conclude
that jumps from x to x′ take place at rate

π(x′)

π(x)
µ = µ exp

[

a+ b
∑

i

xi

]

.

We can often usefully think of the process ν(t) ≡
∑

i xi(t) as a birth-and-death chain on
{0, 1, . . . , N} with jump rates

k 7→ k + 1 at rate (N − k) exp(a+ bk)

k 7→ k − 1 at rate kµ

and with equilibrium distribution

P [ν(0) = k] ∝
(

N

k

)

exp{ak + 1
2
bk(k − 1)}.

In this example, we naturally take fi(x) = ci + c′iI{xi=1}, where ci and c′i are positive
constants, and now need to compute at least the moments (5) and (6). We have the
explicit expressions

P (xi(0) = 1) =

∑N
k=0

k
N

(

N
k

)

exp{ak + 1
2
bk(k − 1)}

∑N
k=0

(

N
k

)

exp{ak + 1
2
bk(k − 1)}

=

∑N−1
k=0

(

N−1
k

)

exp{ak + a+ 1
2
bk(k + 1)}

∑N
k=0

(

N
k

)

exp{ak + 1
2
bk(k − 1)}

= π(N ; a, b),

say. For small N , we can work with this expression explicitly, but for larger N , the
asymptotic

P [ν(0) = k] ∼ c exp[ak + 1
2
bk(k − 1)− (k + 1

2
) log

( k

N

)

− (N − k + 1
2
) log

(

1− k

N

)

]

= c exp[N{a k

N
+ 1

2
bN

k

N

k − 1

N
− k + 1

2

N
log
( k

N

)

− (1− k − 1
2

N
) log

(

1− k

N

)

}]
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so that the proportion k/N of excited states must be approximately the value ξ which
maximises this expression; ξ must solve

1− ξ

ξ
= exp(−a− bNξ),

though there is not in general a unique solution to this equation (there are always either
1 or 3 roots).

In order to compute the expectations (6), we need to be able to evaluate P (xj(T ) =
1|xi(0) = 1), where T is an exponential variable of rate β independent of x. Firstly, we
deal with the case i 6= j. By considering the first time that share i becomes quiet, it is not
hard to convince oneself that

P (xj(T ) = 1|xi(0) = 1) =
β

β + µ
P (xj(T ) = 1| xi(s) = 1 ∀s ≤ T )

+
µ

β + µ
P (xj(T ) = 1| xi(0) = 0)

=
β

β + µ
π(N − 1; a+ b, b) +

µ

β + µ
P (xj(T ) = 1|xi(0) = 0).(15)

We combine this equation with the simpler equation

π(N ; a, b) = π(N ; a, b)P (xj(T ) = 1|xi(0) = 1) + (1− π(N ; a, b))P (xj(T ) = 1|xi(0) = 0)

to deduce an expression for P (xj(T ) = 1|xi(0) = 1), namely

P (xj(T ) = 1|xi(0) = 1) =
µπ(N ; a, b) + βπ(N − 1; a+ b, b)(1− π(N ; a, b))

µ+ β(1− π(N ; a, b))
.

For i = j, a similar expression results with the term in π(N − 1; a, b) replaced by 1. The
analysis which leads to these expressions is not entirely correct, however; if τ is the first
time that xi becomes 0, the law of x(τ) is not the same as the invariant law of x given
that xi = 0. Indeed, if we know that xi has been 1 for the whole of the time interval [0, τ),
then the other sites are more likely to be excited. An exact numerical computation of the
true value shows that for realistic parameter values the discrepancy is actually very small,
so we will ignore it for the sake of computational speed. The resulting estimates reported
in the next section are good enough that the extra effort required to do the computations
exactly (which would be prohibitive for many shares) is unnecessary.

3. Estimation of the parameters of the timing Markov process. We suppose
we have for each j = 1, . . . , K a sequence (τ ji )

N
i=1 of times at which quotes in the jth

share were posted. In applications, these would come from a market data feed; in our
analysis they were simulated (of which we will say more presently), but either way we take
these as the inputs for the estimation procedure. We now generate a sequence (Zi)

N
i=1

of d-vector observables, where for each i and each j = 1, . . . , d, the observable Zji is the
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value at time τi either of some Y l(α) or of some ηlm(β, λ), where the parameters and the
particular shares are chosen suitably. The main points to bear in mind are that small
values of α will give relatively stable estimates of the long-run average behaviour, but will
be less successful in probing properties such as mean-reversion in the Ornstein-Uhlenbeck
example, say, whereas values of α which are too big will result in estimate instability. We
also should choose observables Zj which give information about all the shares of interest.
The observables update quite simply, as we have

Y lτ(n)(α) = α+ e−α(τn−τn−1)Y lτ(n−1)(α),

ηlmτ(n)(β, λ) = α(Y mτ(n)(λ)− λ) + e−α(τn−τn−1)ηlmτ(n−1)(β, λ).

As is usual in this sort of work, the initial values of Y l and ηlm are not determined, and
one way to proceed would be to take them to be zero, then update all the way through
the sequence, and then repeat, using the final estimates as the initial. What we actually
did is to take the first several thousand prices to ‘burn in’ the Y ’s and η’s, and then begin
to estimate from there. The mean µZ and covariance VZ of the vector Zi, based on the
assumption that the underlying Markov process is in equilibrium, can now be expressed
via the equations (5)–(10); they will depend on the parameters Θ of the Markov process.
So in order to estimate those parameters, we perform the minimisation

(16) min
Θ

(Zn − µZ) · V −1
Z (Zn − µZ).

This gives a parameter estimate which will be updated with each new quote. The function
to be minimised is typically highly nonlinear, and a general minimisation routine will be
needed for this step. It is reasonable in practice to fix V −1

Z by evaluation at the last
minimising value of Θ. However, this minimisation does not prove to be as laborious
as it sounds, since when a new quote comes in we simply take the last estimate of the
parameter Θ as the starting point for the minimisation; as the minimising value is unlikely
to have changed much from one quote to the next, the minimisation is usually achieved
very rapidly.

One possible practical problem with this approach is that the expressions for the
covariances in VZ are frequently quite unwieldy, as the examples of the previous section
show. So a ‘quick and dirty’ approach to the problem is to replace the quadratic form in
(16) by a diagonal quadratic form, whose diagonal elements are just (Zj1)

−2. We display
in the Figures the results of doing this ‘quick and dirty’ minimisation on the two-state
Markov chain example with parameters f0 = 1, f1 = 18, q0 = 0.05 and q1 = 0.5. The
functionals we chose for the estimation were Y (0.01), Y (0.005), η(0.0051, 80), η(0.00501, 5),
η(0.00505, 0.5), ξ(0.005, 20, 20), and ξ(0.01, 10, 10). Next we display the results of the
‘quick and dirty’ minimisation on Example 2, the one-dimensional Ornstein-Uhlenbeck
example, with parameters b = 0.5, K = 20, and c = 1, and using estimation functionals
Y (0.005), η(0.00499, 40), η(0.00498, 0.2), ξ(0.00502, 0.8, 0.8), and ξ(0.00503, 8, 8). And the
final figures refer to the estimation of Example 3 where the parameters are α = β = 0.05,
µ = 1, and the ci and c

′
i take the same values for all shares, namely 1.5 and 10 respectively.

The estimation was based on Y (0.04) and seven η processes involving different shares and
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parameter values. In all cases, the simulation ’beds in’ with a few thousand events before
the estimation begins, and then we take 10000 events in each example. The results reported
are expressed as the estimated value divided by the true value, so we are looking for paths
which stay close to the dashed line at level 1. The x-axis is numbered in blocks of 50,
so corresponds in each case to the whole 10000 events. As can be seen, the estimation
of the parameters of Example 1 is remarkably good. The estimates of the parameters of
Example 2 is acceptable, but this is not an example that one would feel too confident
about using in practice. This is because it may be very hard to determine the parameter
values from the data whatever estimation procedure is used. Consider what would happen
if b were very large; this would mean that the diffusion remains close to 0 most of the
time, so that the intensity f(Xt) = K(Xt − c)2 will most of the time be approximately
Kc2. Thus we should expect to be able to recover an estimate of Kc2 with high accuracy,
but the separate estimates of K and c are likely to be very poor. Turning to example 3,
we find that the estiamtes of α and c′ ≡ f1 are quite acceptable, but that the estimates
of β and µ wander quite a lot. One difference between this example and the other two is
that here we did not use any ξ processes, and including these would undoubtedly improve
the estimation. Part of the difficulty of using ξs is that there is only an approximate
expression for the mean values, and the closeness of approximation is hard to assess. As
part of the numerical study, we computed the covariance matrix of a collection of Y s and
ηs using the approximate argument, and found that it was not non-negative-definite. Thus
the approximation may not be very good here, but at least one may say that for larger
numbers of shares we would expect these approximations to give better answers.

4. Estimation of the distribution of sizes and prices. We now turn to the structure
and estimation of the sizes and prices of quotes. For simplicity, we shall assume that,
conditional on the times of the quotes for all shares, the sizes and prices for different shares
are independent. This assumption reduces the situation to that of a single share, which
allows us to simplify notation by omitting the index for the share under consideration.

So we shall assume that we have a single share, and that quotes for this share are posted
at times (τi)i∈Z generated according to the mechanism introduced in Section 2. The quote
at time τi will consist of an observed log-price yi and an amount ai, whose joint distribution
we shall soon specify. Notice that the amount may be negative or positive, according as
the quote is an offer to buy or to sell. Firstly, we shall suppose that the amounts (ai) are
independent identically-distributed (IID) random variables. To estimate the distribution
of the ai, we simply take market data and inspect it. We might take N quotes, note the
values a1, . . . , aN , and form the empirical distribution (or some smoothed version of it);
alternatively, if the empirical distribution looks close to some simple parametric family, we
may assume that the distribution is from that parametric family, and proceed to estimate
the parameters. In short, the problem we are dealing with here is very well studied; we
are attempting to estimate the distribution of an IID sequence.

Next we shall specify the behaviour of the yi, in terms of an ‘underlying’ price process
z, which we shall assume for the present discussion is a drifting Brownian motion zt =
σWt + µt (though see later comments on other alternatives). We shall suppose that

(17) yi = z(τi) + f(ai)εi,

12



where the εi are IID zero-mean normals with unit variance, and the function f reflects the
effect that if the size ai is smaller, the variance is likely to be larger. How do we go about
estimating the unknowns µ, σ and f of this specification, as well as the underlying price
process z?

To begin with, we propose to estimate f from data on frequently-traded shares. If
f is supposed to explain the tendency for larger deals to be more accurately priced, it
is reasonable to suppose that this effect is common across shares; and if this is so, we
may estimate it from the more liquid shares. The unobservability of z complicates this
estimation, but if we were to form some exponentially-weighted average of past log-price
values,

(18) ȳi ≡
∑

j<i e
−λ(τi−τj)yj

∑

j<i e
−λ(τi−τj)

,

where λ > 0 is not too small, ȳi should be a reasonable approximation to z(τi). Thus if we
considered the sample of pairs (ai, yi− ȳi) we should be seeing something which looks like
(ai, f(ai)εi), and from this we may estimate the function f . This part of the estimation
needs to be done from historical data, but would not need to be updated very frequently.

The next stage of the estimation is to form estimates of the parameters µ and σ of
the underlying process z. Since the effect of z on a small time scale is likely to be small
compared to the fluctuations of f(ai)εi, we have to look on longer time-scales to estimate
µ and σ. On these longer time-scales, the effect of the error terms f(ai)εi may safely be
ignored, and we are effectively in the situation of estimating the mean and variance of
an IID sequence of Gaussian random variables. This we propose to do using a Bayesian
procedure, since it is important to keep track of the errors in our estimates of µ and σ,
especially for µ, where the errors in estimation are notoriously large. If we have a sequence
(Zi)i≥1 of IID Gaussian variables with mean α and variance v ≡ 1/w, we shall suppose we
have a prior density for (α,w) of the form

p0(α,w) = c0 exp(− 1
2
k0w(α− a0)

2 − ρ0w − θw−1 − γ0 log(w))

for some constants ρ0 > 0, θ > 0, k0 > 0, γ0, a0 and the normalising constant

c0 =

√

k0
2π

2

(

θ

ρ0

)(2γ0+3)/4

Kγ0+3/2(2
√

ρ0θ).

If we now assume inductively that the posterior density of (α,w) given Z1, . . . , Zn has the
form

pn(α,w) = cn exp(− 1
2
knw(α− an)

2 − ρnw − θw−1 − γn log(w)),

then the joint density of (Zn+1, α, w) will be

cn
√
2π exp(− 1

2
w(z − α)2 − 1

2
knw(α− an)

2 − ρnw − θw−1 − (γn − 1
2
) log(w)),

which is easily worked into the form

cn
√
2π exp(− 1

2
w(1+kn)(α−

z + knan
1 + kn

)2− 1
2
w
kn(z − an)

2

1 + kn
−ρnw−θw−1−(γn− 1

2
) log(w)).
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Hence we deduce the updating rules:

kn+1 = 1 + kn(19)

an+1 =
z + knan
1 + kn

(20)

ρn+1 = ρn +
kn(z − an)

2

2(1 + kn)
(21)

cn+1 =

√

kn+1

2π
2

(

θ

ρn+1

)(2γn+1+3)/4

Kγn+1+3/2(2
√

ρn+1θ)(22)

γn+1 = γn − 1
2

(23)

Applying this filtering procedure to (say) historical weekly data will generate a posterior
distribution for the unknown µ and σ2.

The final step of the estimation procedure is different in that we need to estimate the
‘underlying’ price z(τi), rather than any parameter. For this, we propose a Kalman filter,
working on the assumption that the value of σ2 is the posterior mean value. This is a bold
assumption, but in view of the fact that one typically knows the volatility of a share with
much higher precision than the mean return, it may suffice. In any case, the theory of
the Kalman filter is sufficiently well known that we need only report the final form of the
updating; if conditional on observations up to time τn−1 we have

(

z(τn−1)
µ

)

∼ N

((

ẑn−1

µ̂n−1

)

,

(

vzz vzµ
vµz vµµ

))

and the nth quote is for amount an at time sn later, then conditional on all observations
up to time τn we have

(

z(τn)
µ

)

∼ N

((

ẑn
µ̂n

)

,

(

v′zz v′zµ
v′µz v′µµ

))

where

ẑn = ẑn−1 + µ̂n−1sn + νn
θ

f(an)2 + θ

µ̂n = µ̂n−1 + νn
ψ

f(an)2 + θ
,

where sn ≡ τn − τn−1, an is the amount of the nth quote, νn ≡ yn − ẑn−1 − µ̂n−1sn is the
innovation, and

θ = σ2sn + vzz + 2snvzµ + s2nvµµ

ψ = vzµ + snvµµ.

The covariance matrix is

(

v′zz v′zµ
v′µz v′µµ

)

≡
(

θf(an)
2

f(an)2+θ
ψf(an)

2

f(an)2+θ

ψf(an)
2

f(an)2+θ
vµµ − ψ2

f(an)2+θ

)

.
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If we want to step away from the assumption that the increments of z are Gaussian, we
could allow z to be a Lévy process with jumps, and this would give a likelihood for the
changes in z which would not be of simple quadratic form. To handle this, we propose an
approximate Kalman filter, as explained in Rogers & Zane [12] (a sketch of the method is
summarised in Rogers [14]); the minimiser of the conditional likelihood provides the new
estimate of the mean, and the second derivative of the conditional likelihood provides the
new estimate of the inverse of the covariance.

6. Conclusions. We have presented in this paper a very general framework for mod-
elling high-frequency data, we have derived general estimation methods, and have in three
concrete examples of interest developed the estimation of simulated data to show that the
methods proposed really can recover the parameter values satisfactorily. Much remains
to be done; the most obvious directions for further research are in testing such models
against actual data, and in studying the consequences of such models for pricing and
hedging. Nevertheless, a start has been made; the techniques required are often quite de-
manding compared to some other approaches, but the modelling framework seems robust
enough to be able to answer further questions put to it, and also rich enough to be able
to model many of the qualitative features of high-frequency data. These are promising
properties, and we look forward to further developments.
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Appendix. We collect here several proofs and other discussions of a technical nature which
may have interrupted the flow at an earlier point. To follow the proofs, it is necessary to
have an understanding of martingales at about the level of Williams [19], and of finite-
variation stochastic integration at about the level of Part 3 of Chapter IV in Rogers &
Williams [11].

Proof of Proposition 1. The starting point is the fact that

(A1) N i
t −

∫ t

0

fi(Xs)ds ≡ N i
t − Λit is a finite-variation martingale

for each i. This means then that the processes

M i
t (α) ≡

∫ t

−∞

αeαs(dN i
s − dΛis)

= eαtY it (α)−
∫ t

−∞

αeαsfi(Xs)ds(A2)

are also finite-variation martingales, so

E
[

M i
t (α)M

j
t (β)

]

= E
[

∑

s≤t

∆M i
t (α)∆M

j
t (β)

]

= 0(A3i)

if i 6= j, because the Poisson processes Ñ i are independent, and therefore have no jumps
in common. If i = j, then we have instead

E
[

M i
t (α)M

i
t (β)

]

= E
[

∑

s≤t

αβeαseβs∆N i
s

]

= E

∫ t

−∞

αβe(α+β)sdN i
s

= E

∫ t

−∞

αβe(α+β)sfi(Xs)ds,(A3ii)

again using (A1). Now from (A2) we use the fact that EM i
t (α) = 0 to learn that

E[Y i0 (α)] = E

∫ 0

−∞

αeαsfi(Xs)ds

=

∫ 0

−∞

αeαs(π, fi)ds

= (π, fi),

which is equality (4).
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Turning to equality (6), we need the fact that

(A4) E[M i
t (α)|FX ] = 0

for all i, t, and α, where FX ≡ σ(Xt, t ∈ R) is the σ-field generated by the process X .
This is because the Poisson processes Ñ i are independent of X . Using (A4), we therefore
have from (A2) and (A3) that

E
[

Y i0 (α)Y
j
0 (β)

]

= E
[

M i
t (α)M

i
t (β)

]

+ E
[

∫ 0

−∞

αeαsfi(Xs)ds

∫ 0

−∞

βeβufj(Xu)du
]

= δij
αβ

α+ β
(π, fi) + E

[

∫ 0

−∞

αeαsfi(Xs)ds

∫ 0

−∞

βeβufj(Xu)du
]

,(A5)

leaving just the final term to understand. The product of the integrals breaks into two
similar terms, depending on which of s or u is the larger. One of the terms is

E
[

∫ 0

−∞

αeαsfi(Xs)
(

∫ 0

s

βeβufj(Xu)du
)

ds
]

=

∫ 0

−∞

αeαs
(

∫ 0

s

βeβu(π, fiPu−sfj)du
)

ds

=

∫ ∞

0

αe−αt
∫ t

0

(π, fiPvfj)βe
β(v−t)dvdt

=

∫ ∞

0

eβv(π, fiPvfj)
αβ

α+ β
e−(α+β)vdv

=
αβ

α+ β
(π, fiRαfj),(A6)

where (Pt)t≥0 is the transition semigroup of the Markov process X , and

Rα ≡
∫ ∞

0

αe−αtPtdt

is the resolvent. Together with the similar expression from the integral where s > u we
combine (A5) and (A6) to obtain (6).

Next, for (5), we have

Eηij0 (α, β) = E
[

∫ 0

−∞

αeαsY js−(β)dN
i
s

]

= E
[

∫ 0

−∞

αeαsY js−(β)fi(Xs)ds
]

= E
[

∫ 0

−∞

αeαs
(

∫ s

−∞

βeβ(u−s)fj(Xu)du
)

fi(Xs)ds
]

=

∫ 0

−∞

αeαs
(

∫ s

−∞

βeβ(u−s)(π, fjPs−ufi)du
)

ds

= β(π, fjRβfi)
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after a few calculations, which is (5).

To compute the mean of ξijk0 (α, β, γ), we proceed similarly to obtain

Eξijk0 (α, β, γ) = E
[

∫ 0

−∞

αeαsY js−(β)Y
k
s−(γ)dN

i
s

]

= E
[

∫ 0

−∞

αeαsY js−(β)Y
k
s−(γ)fi(Xs)ds

]

= E[Y j0−(β)Y
k
0−(γ)fi(X0)]

= E[{M j
0−(β) +

∫ 0

−∞

βeβsfj(Xs)ds}.

{Mk
0−(γ) +

∫ 0

−∞

γeγsfk(Xs)ds}fi(X0)]

= δjkE[

∫ 0

−∞

βγe(β+γ)sfj(Xs)dsfi(X0)]

+E

[

(

∫ 0

−∞

βeβsfj(Xs)ds
)(

∫ 0

−∞

γeγsfk(Xs)ds
)

fi(X0)

]

= δjkβγ(π, fjRβ+γfi)

+E

[

(

∫ 0

−∞

βeβs
(

∫ s

−∞

γeγufk(Xu)du
)

fj(Xs)ds
)

fi(X0)

]

+E

[

(

∫ 0

−∞

γeγs
(

∫ s

−∞

βeβufj(Xu)du
)

fk(Xs)ds
)

fi(X0)

]

= βγ
(

δjk(π, fjRβ+γfi) + (π, fjRβfkRβ+γfi) + (π, fkRγfjRβ+γfi)
)

as stated at (7).
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