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Abstract

This paper approaches the definition and properties of dynamic convex risk measures
through the notion of a family of concave valuation operators satisfying certain simple
and credible axioms. Exploring these in the simplest context of a finite time set and
finite sample space, we find natural risk-transfer and time-consistency properties for a
firm seeking to spread its risk across a group of subsidiaries.

1 Introduction.

The growing literature of risk measurement considers mainly1 single-period risk mea-
surement, where one attempts to ‘measure’ at time zero the risk involved in undertaking
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1See [2, 16, 11, 1, 17, 10, 9, 23, 12, 18, 20, 7] for one-period risk-measurement, [3] for the multiperiod
extension of [2], [28, 5, 8, 25] for a particular class of dynamic risk measures (the multiperiod behaviour
addressed by the latter papers is somehow less general than the one considered by [3] and will be commented
later), [19, 21, 26, 27] for further dynamic risk measures, and [22, 14] for the related economics literature
devoted to preference relations and Bayesian decision-making.
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to receive some contingent claim X at time 1. In this literature, a set A of acceptable
contingent claims is frequently taken to be the primitive object (as in [2], for example).
Such a set gives rise naturally to a risk measure πA via the definition

πA(X) = sup [m |X −m ∈ A ] ,

which is simply the greatest price at which it would be acceptable to buy the contingent
claim X. Artzner et al. [2] define a coherent utility function2 to be one which satisfies
five axioms equivalent to

(CRM1) concavity : π(λX + (1− λ)Y ) ≥ λπ(X) + (1− λ)π(Y ) (0 ≤ λ ≤ 1);

(CRM2) positive homogeneity : if λ ≥ 0, then π(λX) = λπ(X);

(CRM3) monotonicity : if X ≤ Y , then π(X) ≤ π(Y );

(CRM4) translation invariance: if m ∈ R, then π(Y +m) = π(Y ) +m.

(CRM5) relevance: if X ≥ 0, and X 6= 0 then π(X) > 0.

They go on to show that (under simplifying assumptions) any such risk measure is
representable as3

π(X) = inf
Q∈Q

EQ[X], (1)

where Q is some collection of probability measures4.
The positive-homogeneity condition (CRM2) is arguably unnatural, and was removed

by Föllmer & Schied [16] and by Frittelli & Gianin [18] who thereby introduced the notion
of a convex risk measure. They show that a convex risk measure admits a representation
as

π(X) = inf
Q∈Q

{

EQ[X]− α(Q)
}

(2)

where α is a concave ‘penalty’ function on Q. Clearly if α ≡ 0, then we recover the
representation of a coherent risk measure, but the notion of a convex risk measure is
more general.

Of course, the usefulness of a single-period study should be judged by the extent to
which it helps us to understand risk measurement in a multi-period setting; this has
been well recognised for some time, and recently attempts have been made to achieve
that extension. For example, Artzner, Delbaen, Eber, Heath and Ku [3] adapt the static
coherent risk measure axioms to the product sample space {0, 1, . . . , T}×Ω and obtain
a representation for a coherent risk measure of the form:

π(X) = inf
V ∈V

EP

[

T
∑

t=0

Xt(Vt − Vt−1)

]

2In fact, the paper [2] works with coherent risk measures ρ, whose negatives −ρ satisfy the given conditions.
In that paper, coherent risk measures are related to the primitive concept, the acceptance set.

3The properties (CRM) appeared in an earlier paper of Gilboa & Schmeidler [22], in the context of Bayesian
decision theory. This study was not concerned with risk measurement.

4Evidently, if π has the form (1) then it satisfies the properties (CRM1-4).
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for one fixed probability measure P and a set V of positive increasing adapted processes.
The argument of π is of course a cash-flow process.

Föllmer and Schied [16, 17], Cvitanic̀ and Karatzas [8] and Nakano [25] also have several
periods for portfolio construction and measure the risk of final wealths, which may de-
pend on trajectories. However, they do not incorporate in their analysis what happens
at intermediate dates. The trajectories have only an impact on the final values. Sim-
ilarly, in Riedel [28], the risk-adjusted measurement of cumulative cash-flows involves
only final values and not the whole trajectories. By contrast, as in [3], we not only
look at final values but also at intermediate time points. Although Cheredito, Delbaen
and Kupper [5] consider continuous-time discounted value processes, the convex risk
measures treated in their paper are static as they only measure the risk of a discounted
value process at the beginning of a given time period.

The major issue which arises in a multiperiod framework is the one of dynamic con-
sistency. Although every set of probability measures generates a coherent risk measure
in the static framework, only sets of probability measures consistent in an appropriate
sense yield dynamic coherent risk measures. This consistency property of probability
measures (or stability by “pasting”) has been analysed by Epstein and Schneider [14]
(building upon the atemporal multiple-priors model of Gilboa and Schmeidler [22] and
using prior-by-prior Bayesian updating for “rectangular” sets of priors), Artzner et al.
[3] (using change-of-measure martingales) and Riedel [28] (via Bayesian updating and a
different kind of translation invariance property). It is often referred to as multiplicative
stability [11]. After the first draft of this paper was complete, we learned of a preprint of
Cheredito, Delbaen & Kupper [6] which develops an axiomatic framework quite similar
to ours. The main aim there appears to be to explore the implications of the given setup
for acceptance sets and coherent risk measures, relating to earlier work of the authors.
Our own emphasis is quite different; we do not concern ourselves with acceptance sets,
but rather wish to understand what consequences of the axiomatic setup can be devel-
oped. We will comment further on the relations between the two contributions as the
occasions arise.

In this paper, we define and analyse5 the notion of a dynamic convex risk measure,
extending the dynamic coherent risk measure of [3], rather as Frittelli & Gianin [18] and
Föllmer & Schied [16] extend [2] in the single-period context. However, we do not begin
with the notion of a set of acceptable cash-flows, but start from a family of valuation
operators, or, more briefly, valuations.

As a first hint of the usefulness of this general approach, we quote a simple result
which is presumably well known (it certainly appears in Rogers [30], for example.) The
idea is to write down certain natural axioms that market valuation operators should
have, and to derive implications.

5We work in the technically simple setting of a finite time set, and a finite probability space Ω; this allows
us to obtain the main ideas without being held up by technical issues.
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Theorem 1 In a filtered probability space (Ω, (Ft)t≥0, P ), suppose that valuation oper-
ators (πtT )0≤t≤T

πst : L
∞(Ft)→ L∞(Fs) (0 ≤ s ≤ t).

satisfy the following four axioms:

(A1) Each πst is a bounded positive linear operator from L∞(Ft) to L
∞(Fs);

(A2) If Y ∈ L∞(Ft), Y ≥ 0, then

π0t(Y ) = 0 ⇐⇒ P (Y > 0) = 0.

(no arbitrage)

(A3) For 0 ≤ s ≤ t ≤ u, Y ∈ L∞(Fu), X ∈ L∞(Ft),

πsu(XY ) = πst(Xπtu(Y ))

(dynamic consistency)

(A4) If (Yn) ∈ L
∞(Ft), |Yn| ≤ 1, Yn ↑ Y then πst(Yn) ↑ πst(Y ) (continuity)

For simplicity, suppose also that F0 is trivial. Then there exists a strictly positive
process (ζt)t≥0 such that the valuation operators πst can be expressed as

πst(Y ) =
E
[

ζtY
∣

∣Fs
]

ζs
(0 ≤ s ≤ t). (3)

The proof of this result takes about a page, and is included in the appendix; nothing
more sophisticated than standard facts about measure theory is required6. However, its
importance is not to be underestimated; it is in fact a poor man’s Fundamental Theorem
of Asset Pricing (FTAP). Indeed, the conclusion of Theorem 1 is exactly what comes
out of the FTAP, but its axiomatic starting point is different; in the usual FTAP we
start from some suitably-formulated axiom of absence of arbitrage, and here we start
from the axioms (A1)–(A4). Which of these two axiomatic starting points one should
wish to assume is of course a matter of taste; in defence of the unconventional approach
taken here, it is worth pointing out7 that if we want to have the conclusion (3), then
(A1)–(A4) must hold anyway!

Of the four axioms assumed in Theorem 1, the key one is the dynamic consistency
axiom, (A3), as you will see from the proof; without this, we are able to prove that (3)
holds if s = 0, but this is of course far too limited to be useful. Notice the interpretation
of (A3); we can obtain X units of Y at time u in two ways, either by buying at time s
the contingent claim XY , or by buying at time s the contingent claim which at time t
will deliver X units of the time-t price πtu(Y ) of Y , and (A3) says that these two should
be valued the same at time s.

6Note however that the assumption that the valuation operators are defined on the whole of L∞(Ft) greatly
simplifies the argument.

7It is also worth pointing out that it took years to find the correct formulation for the notion of absence
of arbitrage!
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Now Theorem 1 relates to market valuations, where linearity in the contingent claim
being priced is a reasonable assumption; if we want to buy X and Y , the price will be
the price of X plus the price of Y . However, when it comes to risk measurement, what
the valuation operator is doing is to tell us how much capital a given firm should set
aside to allow it to accept a named cash balance. Linearity now would not be a property
that we want (we might require a positive premium both to cover a cash balance C and
to cover −C, but we would not require a positive premium to cover the sum of these).
Moreover, the valuation operators will depend on the particular firm; different firms will
have different valuation operators, and an interesting question is how these combine.

In the next Section, we shall formulate the analogues of the axioms of Theorem 1
for concave valuation operators, and deduce some of their consequences. There are sub-
stantial differences; concave valuation operators have to be defined over cash balances,
because without linearity we cannot build the price of a cash balance from the prices of
its component parts. Nevertheless, the dynamic consistency axiom turns out to be the
heart of the matter. We shall characterise families of valuation operators which satisfy
the given axioms; it turns out that such families (and their duals) possess simple and
appealing recursive structure.

We shall also study the question of how a firm may decide to divide up a risky
cash balance process between its subsidiaries, each of which is subject to the regulatory
constraints implicit in their individual valuation operators. We find that there is an
optimal way to do this risk transfer, in terms of an inf-convolution (as in, for example,
the study of Barrieu and El Karoui [4].) Moreover, the optimal risk transfer generates
a family of valuation operators for the firm as a whole, and this family of valuation
operators satisfies the same axioms as the individual components. We shall also see that
if the firm decides at time 0 how it is going to divide up the cash balance between
its subsidiaries, then at any later time, whatever has happened in the meantime, the
original risk transfer chosen is still optimal. There is therefore a time-consistency in
how the firm should transfer risk among its subsidiaries.

Another question we answer concerns what happens if a firm facing a risky cash
balance process is allowed to take offsetting positions in a financial market. We find
that there is an optimal offsetting position to be taken, which is time consistent, and
the induced valuation operators for the firm once again satisfy the axioms.

2 Valuation operators.

Working in a filtered probability space (Ω,F , (Ft)0≤t≤T , P ), we let BV denote the space
of adapted processes of bounded variation with R-paths8. We think of K ∈ BV as a
cash balance process, with Kt being interpreted as the total amount of cash accumulated
by time t. The process K need not of course be increasing. The upper end T of the
time interval considered is a finite constant; there is no real difficulty in letting the time

8This is the terminology of Rogers & Williams [29] for paths that are right continuous with left limits
everywhere.
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set be [0,∞), but we choose not to do this here in view of our concentration later on
examples where Ω is finite.

We propose to introduce some natural axioms to be satisfied by a family 9

{πτ : BV → L∞(Fτ )
∣

∣ τ ∈ O}

of valuation operators, or valuations for short. We interpret −πτ (K) as the amount of
capital required by law at time τ to allow a firm to accept the cash balance process K.
The requirement could be different for firms in different countries, or for an investment
bank and a hedge fund, for example. Not surprisingly, we shall suppose that

πτ (0) = 0 ∀τ. (4)

The axioms we require of the family of valuations are the following.

(C) πτ is concave for all τ ;

(L) πτ (IAI[τ,T ]K) = IAπτ (K) for all τ,K, for all A ∈ Fτ ;

(CL) if τ , τ ′ are two stopping times, and A ∈ Fτ ∩ Fτ ′ , with A ⊆ {τ = τ ′},
then for every K

πτ (K) = πτ ′(K) on A

(M) if Kt ≥ K ′
t for all t, then πτ (K) ≥ πτ (K

′) for all τ ;

(DC) for stopping times τ ≤ σ,

πτ (K) = πτ (KI[τ,σ) + πσ(K)I[σ,∞));

(TI) if for some a ∈ L∞(Fτ ) we have Kt = K ′
t + a for all t ≥ τ , then πτ (K) =

a+ πτ (K
′).

Remarks. Axiom (C) is a natural property for capital adequacy requirements for risky
cash balances; see [2], for example.

Axiom (L) (for local) says two things. Firstly, if you have reached time τ , then all
that matters for valuation is how much cash has currently been accumulated, and what
is to come; the exact timing of the earlier payments does not influence the valuation10.
Secondly, Axiom (L) expresses the following natural fact: at time τ , if event A has not
happened then the cash balance IAI[0, τ)K is clearly worthless, and if the event has
happened, then the cash balance IAI[0, τ)K will be worth the same as K. Axiom (CL)

9As usual, O denotes the optional σ-field on [0, T ]×Ω, and by extension the statement τ ∈ O for a random
time τ means that I[τ,T ] is an optional process, equivalently, that τ is a stopping time - see, for example, [29]
for more background on the general theory of processes.

10Note that Axiom (L) does not say that you value the cash balance after τ the same as the whole of the
original cash balance K; the cash balance I[τ,T ]K pays nothing up til time τ , then a lump sum of Kτ .
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(for consistent localisation) says that the localisations of πτ and πτ ′ agree where τ = τ ′,
again a natural condition.

Axiom (M) (for monotonicity) says that a larger capital reserve is required to short
a larger cash balance, but it says more than just this. In particular, if Kt ≥ K ′

t for
all 0 ≤ t ≤ T , with KT = K ′

T , then the two cash balances K and K ′ both deliver
exactly the same in total, but K is considered less risky than K ′ because it delivers the
cash sooner. An earlier version of this work used an axiom which expressed indifference
between cash balances that delivered the same total amount of cash; though this axiom
was entirely workable, the effect of it was that the valuation operators were essentially
defined on cash balances which were all delivered at time T , and the valuation operators
themselves served only to ‘interpolate’ prices in some sense. The interpretation of (M)
is not that earlier payments are preferred to later payments because of the interest that
will accrue; indeed, we think of all payments as being discounted back to time-0 values
(or equivalently that the interest rate is zero). Even under these assumptions, according
to (M) earlier payments are better than later ones - as in reality they are! This embodies
the essence of cashflow problems, where a firm may be in difficulties not because it does
not have sufficient money owed to it, but because that money has not yet come in.

Axiom (DC) (for dynamic consistency) has a simple and natural interpretation. It
says that we must set aside as much for the cash balance K, as for the cash balance
which gives us K up to time σ, and at time σ requires us to hand in the accumulated
cash balance Kσ in return for the amount of cash that we would allow us to accept the
entire cash balance K. This latter cash balance would clearly allow us to accept the
original cash balance K.

The final axiom (TI) (for translation invariance) is again entirely natural.
In the next Section, we shall explore the consequences of these axioms only in the

simplest possible setting, where Ω is finite. This means in particular that we can take the
time set to be finite, and the entire filtered probability space to be represented by a tree.
This (restrictive) assumption allows us to ignore all technicalities, and quickly uncover
the essential structure implied by the axioms. We leave technicalities for technicians,
and remark only that in any real-world application we would be forced to use a numerical
approach, in which case we would have to be working with a finite sample-space.

3 Valuations on finite trees.

Henceforth, we work with a finite sample space Ω, and a finite time set {0, 1, . . . , T}.
The σ-field F on Ω is of course the σ-field of all subsets, and the filtration is represented
by a tree11 with vertex set T . The root of the tree will be denoted by 0, and from
any vertex y ∈ T there is a unique path to 0; we shall say that y is a descendant of x
(written x ¹ y) if x lies on the path from y to 0. If x ∈ T , we shall write x− 1 for the
immediate ancestor of x, x + 1 for the set of immediate descendants of x, and x+ for
the set of all descendants of x, including x itself. Note that Ω can be identified with the

11The tree does not of course have to be binomial, or regular.
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set of endpoints of T . For any x ∈ T we shall denote by t(x) the time of x, which is the
depth of x in the tree. Thus t(0) = 0, and t(x) = T for any of the terminal nodes x.
Notice also that a stopping time τ can be identified with a subset12 JτK of T with the
property that for any terminal node ω of the tree the unique path from ω to 0 intersects
JτK in exactly one place.

In this setting, a cash balance is simply a map K : T → R. We interpret Kx as the
cumulative amount of the cash balance at vertex x in the tree. We shall also suppose
throughout that interest rates are zero, or equivalently that cash balances have all been
discounted back to time-0 values; this assumption is insubstantial, and leaves us clear
to focus on what is important here.

In view of axiom (C), the valuations πτ are just concave functions defined on some
finite-dimensional Euclidean space, and so can be studied through their convex dual
functions

π̃τ (λ) ≡ sup
K
{πτ (K)− λ ·K}.

For simplicity of exposition, we shall make the assumption

ASSUMPTION A: For every τ , the valuation πτ is concave, strictly increasing, upper

semicontinuous, and C2 in the relative interior of its domain of finiteness.

By duality, the original functions πτ can be expressed as

πτ (K) = inf
λ
{λ ·K + π̃τ (λ)}; (5)

compare with the equation (2) above, as in Föllmer & Schied, Frittelli & Gianin. That
equation is at one level simply the general statement (5) of duality, but with a bit more;
in (2) the infimum is taken over a family of probability measures, and in (5) the infimum
is unrestricted. We shall later see that the axioms used here do in fact imply that λ
must be a probability on x+.

3.1 Decomposition.

The dynamic consistency axiom (DC) and localisation axioms (L), (CL) allow us to
decompose the valuations in a simple way. To see this, notice firstly that the family
(πτ ) of valuations is determined once the smaller family {πx : x ∈ T } is known, where
for x ∈ T the operator πx is defined to be

πx = πτx , (6)

where τx is the stopping time

τx(ω) = t(x) if x ≺ ω; (7)

= T otherwise.

12The graph of τ - see [29].
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Here, of course, we are identifying Ω with the set of terminal nodes of T . Once we know
the operators {πx : x ∈ T }, Axioms (L) and (CL) allow us to put together any of the
πτ .

However, the πx can themselves be assembled from the family {πx,x+1 : x ∈ T } of
one-step valuation operators, defined in the following way. If x is a terminal node, then
the argument of πx,x+1 is a cash balance k defined at x, and πx,x+1(k) = πx(k). For all
other x, given a cash balance k defined on x∪ x+1, we extend this to a cash balance k̄
defined on all of T by

k̄z = kx if z = x;

= ky if y ¹ z for some y ∈ x+ 1;

= 0 otherwise.

We may then define
πx,x+1(k) = πτx(k̄). (8)

Of course, the point of this decomposition is really the converse: we wish to build the
(complicated) family (πτ )τ∈O from the simpler family (πx,x+1)x∈T of one-step valuation
operators. It is clear that if we derive (πx,x+1)x∈T from a family (πτ )τ∈O satisfying the
axioms given in Section 2, then the family of one-step valuations must have the following
properties:

(c) πx,x+1 is concave;

(m) if kz ≥ k′z for all z ∈ x ∪ x+ 1 then πx,x+1(k) ≥ πx,x+1(k
′);

(ti) if kz = k′z + a for all z ∈ x ∪ x + 1, then πx,x+1(k) = πx,x+1(k
′) + a

provided both are finite.

What we now argue is that given a family (πx,x+1)x∈T of one-step valuation operators
satisfying (c), (m), (ti) we can build a family (πτ )τ∈O of valuation operators satisfying
the axioms of Section 2.

The essence of the construction is to get the (πx)x∈T , for then if we have a stopping
time τ we define

πτ (K) = πz(K) at z ∈ JτK.

To get the (πx)x∈T , we proceed by backward induction, assuming that we have con-
structed πx for all x such that t(x) ≥ n. The induction starts, because if x is a terminal
node we have πx(k) = πx,x+1(k), and if t(x) = n− 1 we may define

πx(K) = πx,x+1(k),

where k is the cash balance defined by

kz = Kx if z = x;

= πz(K) if z ∈ x+ 1.

9



There is no problem with this, as the definition of πx requires only the one-step op-
erator πx,x+1 and the operators (πz)z∈x+1 which are already known (by the inductive
hypothesis).

If we vary the notation for πx,x+1(k) ≡ πx,x+1(kx, kx+1) so as to make the dependence
on the cash balances at node x and nodes x+1 explicit, then the recursive construction
of the πx takes the clean form

πx(K) = πx,x+1(Kx, πx+1(K)). (9)

Notice the formal similarity to the notion of recursive utility - see Epstein & Zin [15],
Duffie & Epstein [13], Skiadas [31]. This similarity is only formal; in the theory of
recursive utility, there is a running consumption process which does not enter into our
present discussion. This is an interesting extension of the axiomatic approach which we
hope to return to at a later date.

It remains to see that the operators (πτ )τ∈O defined by (9) satisfy the axioms given
in Section 2.

Property (C) follows from the concavity property (c) by backward induction. Prop-
erties (L) and (CL) are immediate from the construction. Property (M) follows from
(m), again by backward induction. Property (DC) requires a little more thought (and
use of the property (ti)), but again follows from the construction. Finally, property (TI)
is a consequence of (ti).

3.2 Duality.

We have just seen that the axioms permit us to decompose the valuation operators into
simpler pieces, but what is the corresponding result for the dual valuation operators π̃x?
What are the characteristic properties?

To understand the structure of the dual, firstly note that the dual valuation operator

π̃x(λ) ≡ sup
K
{πx(K)− λ ·K} (10)

is not always going to be finite. Indeed, because of (L) and (CL), π̃x(λ) will be infinite
if λy 6= 0 for some y 6∈ x+. Moreover, because of (M) the dual operator will be infinite
if λy < 0 for some y. Finally, by considering cash balances K that are constant on x+
and using axiom (TI), we see that for finiteness of π̃x(λ) it is necessary that λ be a
probability on x+:

∑

y∈x+ λy = 1.
One further property can be deduced: infλ π̃x(λ) = πx(0) = 0, using the duality

relation and (4). Thus the dual valuation operators (π̃x)x∈T must satisfy the conditions

(D1) π̃x is convex;

(D2) π̃x(λ) is only finite if λ is a probability on x+;

(D3) infλ π̃x(λ) = 0.
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The recursion for the dual valuations will follow from the recursive form (9) of the
primal valuations. To make this explicit, we need to define the convex duals π̃x,x+1 of
the one-step valuation operators by the usual definition

π̃x,x+1(θ, ψ) = sup
k
{ πx,x+1(kx, kx+1)− θkx − ψ · kx+1}.

The analogues of (D1)-(D3) for the dual one-step valuations will be

(d1) π̃x,x+1 is convex;

(d2) π̃x,x+1(λ) is only finite if λ is a probability on x ∪ x+ 1;

(d3) infλ π̃x,x+1(λ) = 0.

It is easy to see that conditions (c), (m) and (ti) on the one-step valuation operators
are equivalent to conditions (d1)-(d3) on their duals.

What then is the dual analogue of the primal recursion (9)? The answer is provided
by the following result.

Theorem 2 For all x ∈ T and λ a probability on x+, we have

π̃x(λ) = π̃x,x+1(λx, λ̄x+1) +
∑

z∈x+1

λ̄zπ̃z

(

λºz
λ̄z

)

(11)

where λºz denotes the restriction of λ to the set {y : y º z}, and λ̄z ≡
∑

yºz λy.

Remark: Observe that the function

(λ̄z, λºz) 7→ λ̄zπ̃z

(

λºz
λ̄z

)

= sup{λ̄zπz(K)− λºz ·K}

is convex.
Proof. Using (9) and (5), we have

πx(K) = inf
λ
{π̃x(λ) + λ ·K}

= πx(Kx, πx+1(K))

= inf
λ,α
{ π̃x,x+1(λx, α) + λxKx + α · πx+1(K) }

= inf
λ,α,ψ

{ π̃x,x+1(λx, α) + λxKx + α · (π̃x+1(ψ) + ψ ·K[x+1,T ]) }

= inf
λ,α,ψ

[

π̃x,x+1(λx, α) + λxKx +
∑

z∈x+1

αz{π̃z(ψ) + ψºz ·K[z,T ]}
]

= inf
λ,α

[

π̃x,x+1(λx, α) + λxKx +
∑

z∈x+1

λºz ·K[z,T ] +
∑

z∈x+1

αzπ̃z(λºz/αz)
]

.
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However, the only way that the terms inside the final infimum can be finite is if the
arguments of the dual operators π̃x,x+1 and π̃z are probabilities; and this only happens
if αz = λ̄z for all z ∈ x+ 1. The conclusion is that

πx(K) = inf
λ

[

π̃x,x+1(λx, λ̄x+1) +
∑

z∈x+1

λ̄zπ̃z

(

λºz
λ̄z

)

+ λ ·K
]

and the result is proved. ¤

Notice that if we are given operators (π̃x,x+1)x∈T satisfying (d1)-(d3), together with
the condition that π̃x,x+1 ≡ 0 for any terminal node x, then the corresponding one-step
valuations (πx,x+1)x∈T satisfy (c), (m), (ti), and πx,x+1(k) = kx for any terminal node x.
By dualising (11) we quickly arrive at (9). Thus we may just as well construct a family
of valuations operators πτ satisfying the axioms by starting from a family (π̃x,x+1)x∈T
of dual one-step valuations operators satisfying (d1)-(d3).

4 Examples

Let us consider some examples which can be analysed fairly completely in the tree
setting.

Example 1: relative entropy. Suppose given some strictly positive probability dis-
tribution (py)y∈T on T . For any x ∈ T we define the dual valuation π̃x evaluated at
some probability λ on x+ to be

π̃x(λ) =
1

γ

∑

yºx

λy log(λyp̄x/py) ≡ h(λºx | pºx/p̄x ), (12)

where γ > 0 is some positive parameter, and as before p̄x =
∑

yºx py. For other
arguments, π̃x is infinite. It is well known that the function π̃x is convex, and its
concave dual function is easily calculated to be

πx(K) = −
1

γ
log

[

∑

yºx

py
p̄x
e−γKy

]

, (13)

equivalently,

e−γπx(K) =
∑

yºx

py
p̄x
e−γKy . (14)

It is now easy to check the axioms (C), (TP), (DC), (CE) of a family of valuation
operators, and the axioms (L) and (CL) will hold by construction when we assemble the
(πx).

Remark. From (14) we might conjecture that similar examples could be constructed
by the recipe

U(πx(K)) =
∑

yºx

py
p̄x

U(Ky)

12



for some other utility U . However, it is not clear that axioms (TI) and (C) will be
satisfied in general, and indeed within some quite natural class the relative entropy
example is the only example.

Example 2. This example is really a family of examples, built from the simple obser-
vation that if we have some collection (πθx,x+1)x∈T ,θ∈Θ of one-step valuation operators,

such that for each θ the family (πθx,x+1)x∈T satisfies the axioms (c), (tp) and (ce), then
the one-step valuation operators defined by

πx(k) ≡ inf
θ
πθx,x+1(k) (15)

again satisfy (c), (tp) and (ce).
One simple example of this form could be constructed as follows. Suppose that for

each x ∈ T we have some probability distribution α(x) on the immediate descendents
x+ 1, and now we define

πx,x+1(k) = min{kx,
∑

y∈x+1

α(x)yky}.

The recursion (9) is now just the Bellman equation of dynamic programming, and the
value of πx(K) is the ‘worst stopping’ value of the Markov decision process, where α(x)
gives the distribution of moves down to x + 1 from x if it is decided not to stop at x.
It is easy to extend this example to the situation where a finite collection of possible
distributions αi(x) is considered at each vertex x, and the valuation operator gives the
‘worst worst stopping’ value!

Several of the examples of [6] are of this form, and we make no further remark on
them. However, one feature that is noteworthy is the following. If we make the one-step
valuation operators as infima of some sequence of linear functionals,

πx,x+1(k) = min
j
αj · k

then the valuations constructed are coherent, and the dual one-step valuation operators
π̃x are

π̃x,x+1(λ) = 0 if λ ∈ co({αj})

= ∞ otherwise,

where co(A) denotes the convex hull of the set A. Looking at the recursive form (11) of
the dual valuation operators, we see that these too take only the values 0 and ∞. The
set of λ for which π̃0(λ) is finite is a mutiplicatively stable set.

Example 3. Families of one-step valuations πx,x+1 can be constructed via the notion
of a utility-indifference price for a single-period problem. In more detail, given some
probability distribution py over x ∪ x + 1, we define πx,x+1(k) to be that value b such
that

U(x0) =
∑

y∈x∪x+1

pyU(x0 + ky − b) (16)
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where U is some strictly increasing utility function, and x0 is some reference wealth
level. The properties (m) and (ti) are immediate, and (c) is a simple deduction.

It is unfortunately the case that there are few examples where the utility-indifference
price for a single-period problem can be computed in closed form, and the dual valuation
is similarly elusive. Some progress can be made however. Dropping the subscripts, the
calculation of the dual valuation requires us to find

π̃(λ) = sup
k
{π(k)− λ · k}

and the optimisation here can be considered as the optimisation

sup
b,k

b− λ · k (17)

subject to U(x0) =
∑

pyU(x0 + ky − b). (18)

The Lagrangian form of the problem

sup b, k
[

b− λ · k + θ(
∑

pyU(x0 + ky − b)− U(x0))
]

leads to the first-order conditions

1 = θ
∑

pyU
′(x0 + ky − b),

λy = θpyU
′(x0 + ky − b),

so (with I ≡ (U ′)−1) we get

x0 + ky − b = I
( λy
θpy

)

,

from which we see that θ is determined via

∑

pyU

(

I
( λy
θpy

)

)

= U(x0).

The final expression

π̃(λ) = x0 −
∑

λyI

(

λy
θpy

)

simplifies in the case of CRRA U(x) = x1−R/(1−R) to

π̃(λ) = x0 − x
R
0

(

∑

p1/Ry λ1−1/Ry

)R/(R−1)

.

14



5 Spreading and evolution of risk.

Let us consider the situation of a firm which consists of J subsidiaries, possibly in differ-
ent countries, or subject to different regulatory controls. We let the valuation operators
(πjτ )τ∈O determine the regulatory requirements of subsidiary j, j = 1, . . . , J . If (at τ)
subsidiary i wishes to accept the cash balance process K, then regulation requires that
subsidiary to reserve −πiτ (K). However, subsidiary i could approach another subsidiary
j and get them to take from i the cash-balance process K j in return for the regulatory
capital −πjτ (Kj). Subsidiary i is free to enter into such agreements with all the other
subsidiaries, and will do so in such a way as to minimise the regulatory capital required.
Taking into account the possibilities of risk transfer, subsidiary i will need to reserve
−Πiτ (K) instead of πiτ (K), where

Πiτ (K) = sup{πiτ (K −
∑

j 6=i

Kj +
∑

j 6=i

πjτ (K
j)I[x,T ])}

= sup{πiτ (K −
∑

j 6=i

Kj) +
∑

j 6=i

πjτ (K
j)}

= sup{
∑

j

πjτ (K
j) :

∑

j

Kj = K}. (19)

Notice that this is independent of the choice of subsidiary, so we write simply Πτ for
Πiτ . Moreover, we may have that Πτ (0) > 0, so we define

0Πτ (K) = Πτ (K)−Πτ (0), (20)

so as to have the property (4) for the operators 0Πτ . The quantity Πx(0) can be
interpreted as the value of risk-sharing at vertex x. We call the family ( 0Πτ )τ∈O of
valuations the risk-sharing valuation operators, though it is not clear as yet that we
may refer to them as such, since we do not know that they satisfy the axioms for a
family of valuation operators. That is the task of the following result.

Theorem 3 The risk-sharing valuations ( 0Πτ )τ∈O satisfy the axioms (C), (L), (CL),
(M), (DC), and (TI) of the component valuations (πjτ )τ∈O, j = 1, . . . , J .

Proof. Properties (C), (L), (CL), (M), and (TI) are straightforward to verify; only the
property (DC) is not immediately obvious. To establish this, we have on the one hand

Πx(K) = sup{
∑

j

πjx(K
j) :

∑

j

Kj = K}

= sup{
∑

j

πjx(K
jI[x,τ) + πjτ (K

j)I[τ,T ]) :
∑

j

Kj = K}

= sup{
∑

j

πjx(K
jI[x,τ) + ajI[τ,T ]) :

∑

j

KjI[x,τ) = KI[x,τ),

∑

j

aj ≤ Πτ (K)} (21)
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and on the other hand we have

Πx(K[x,τ) +
0Πτ (K)I[τ,T ]) = sup{

∑

j

πjx(K
j) :

∑

j

Kj = K[x,τ) +
0Πτ (K)I[τ,T ]}

= sup{
∑

j

πjx(K
jI[x,τ) + πjτ (K

j)I[τ,T ]) :

∑

j

Kj = K[x,τ) +
0Πτ (K)I[τ,T ]}

= sup{
∑

j

πjx(K
jI[x,τ) + ajI[τ,T ]) :

∑

j

KjI[x,τ) = KI[x,τ),

∑

j

aj ≤ Πτ (
0Πτ (K)I[τ,T ])} (22)

But Πτ (
0Πτ (K)I[τ,T ]) = Πτ (0) +

0Πτ (K) = Πτ (K) and comparing (21) and (22) we
see that Πx(K) = Πx(K[x,τ) +

0Πτ (K)I[τ,T ]), equivalently, 0Πx(K) = 0Πx(K[x,τ) +
0Πτ (K)I[τ,T ]), as required.

There is a simple interpretation of risk-sharing in terms of the duals. Indeed, from (19)
we have that

Π̃x(λ) = sup
(Kj)

{
∑

j

πjx(K
j)− λ ·

∑

j

Kj}

=
∑

j

π̃jx(λ),

so the effect of risk-sharing is simply to add the dual valuation operators.

5.1 Optimal risk transfer in the relative entropy example.

If each of the J subsidiaries has valuations of the relative entropy form (recall (13)):

e−γjπ
j
x(K) =

∑

yºx

pjy

p̄jx
e−γjKy , (23)

how do they combine under risk sharing? For the moment, let us fix a particular x ∈ T
and consider how things work from that node. We shall write p̃jy ≡ pjy/p̄

j
x for brevity,

and shall define
Γ ≡

(

∑

j

γ−1j
)−1

. (24)

The dual valuation operators are given by (see (12) )

π̃jx(λ) =
1

γj

∑

yºx

λy log(λy/p̃
j
y),
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so the risk-sharing result gives us

Π̃x(λ) =
∑

j

π̃jx(λ)

=
∑

j

1

γj

∑

yºx

λy log(λy/p̃
j
y)

=
1

Γ

{

∑

yºx

λy log λy −
∑

j

Γ

γj

∑

yºx

λy log p̃
j
y

}

=
1

Γ

∑

yºx

λy log(λy/Py)−
1

Γ
log

{

∑

yºx

∏

i

(piy)
Γ/γi

}

where we define the probability P on x+ by

Py ≡

∏

i(p
i
y)
Γ/γi

∑

zºx

∏

i(p
i
y)
Γ/γi

. (25)

From this we see that

Πx(0) = −
1

Γ
log

{

∑

yºx

∏

i

(piy)
Γ/γi

}

= −
1

Γ
log

{

∑

yºx

exp(
∑

j

Γ

γj
log(p̃jy))

}

≥ 0,

by Jensen’s inequality, with equality if and only if all the agents have the same pjy. Thus

we see that the aggregated dual valuations 0̃Πx have the same relative-entropy form as
the individual dual valuations, with explicit expressions (24) for the combined coefficient
of absolute risk aversion Γ and (25) for the combined distribution of the probability down
the tree.

How does the risk sharing work out in this example? The maximisation (19) of
∑

j π
τ
x(K

j) can be computed, leading to the conclusion that

Kj
y =

Γ

γj
Ky +

{

1

γj
log p̃jy −

Γ

γj

(

∑

i

1

γi
log p̃iy

) }

. (26)

=
Γ

γj
Ky +

1

γj
log(p̃jy/Py) +

Γ

γj
Πx(0) (27)

This provides a nice interpretation of the way that the cash balance K gets shared.
At each node y, the cash balance Ky at the node gets split proportionally between the
subsidiaries (‘linear risk sharing’), and there are a further two terms, one relating to the
ratio of subsidiary j’s probability of the node y and the aggregated probability Py, and
the other proportional to Πy(0).
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5.2 Dynamic stability of the risk-sharing solution.

When computing the value Π0(0) of risk-sharing at time 0, the subsidiaries find them-
selves solving the optimisation problem

sup{
∑

j

πj0(K
j) :

∑

j

Kj = 0}.

Casting the problem in Lagrangian form

sup{
∑

j

[πj0(K
j)− p ·Kj ],

it is easy to see that at an optimal solution we shall have that all subsidiaries’ marginal
valuations of cash balances will coincide:

∇πj0(K
j) = p. (28)

Suppose that at time 0 they adopt the optimal cash balance processes K j obtained in
this way; as time passes, will they still be satisfied with the K j they first agreed to? It
would be disturbing if we reached some vertex x in the tree where the subsidiaries would
wish to renegotiate the deals that they had committed to at time 0. However, it turns
out that this does not happen: and it is the condition (DC) and the chain rule which
guarantees this.

If x is some vertex in the tree, and we let τ = τx (recall (7)), then using (DC) we
have

πj0(K) = πj0(KI[0,τ) + πτ (K)I[τ,T ])

and differentiating both sides with respect to Ky, where y º x, gives us (by the chain
rule)

py =
∂πj0
∂Ky

(Kj) =
∂πj0
∂Kx

(KjI[0,τ) + πτ (K
j)I[τ,T ])

∂πjx
∂Ky

(K).

Accordingly, in view of (28), we have for each j that there exists a constant bj such that
for all y º x

∂πjx
∂Ky

(K) = bjpy,

and so at vertex x the remaining allocations (cash balances) K jI[x,T ] still constitute a
competitive equilibrium; there are no mutually beneficial trades available to the agents
at vertex x.
Remarks. We could have discussed this dynamic stability in terms of competitive
equilibria. Indeed, if we were to write U j(K) in place of πj0(K), then the concave
increasing functions U j can serve as the utilities of different agents, defined over bundles
of goods, where cash balances at different vertices are interpreted as different goods. We
are now in the realm of finding an equilibrium allocation, and this is dealt with in any
decent text on microeconomic theory; see, for example, [24]. However, although the
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mathematics is exactly that of finding an equilibrium in a pure exchange economy, such
an analogy is economically impure; here, we have been interpreting the πjx as some sort
of price, not as a utility. We allow (for example) the values πjx(K) into the arguments
of the functions (utilities?!) πj0. It seems to us that the link is tenuous, and we desist
from pushing the analogy too far.

5.3 Spreading risk by access to a market.

Suppose a firm with valuation operators (πx)x∈T is allowed access to a market; how will
it act, and how does its valuation of cash balances change? The discussion is similar to
that of risk sharing among subsidiaries, but sufficiently different to require a separate
treatment.

We represent access to the market in the following way. At each stopping time τ , the
firm may change a given cash balance process K to K +K ′ for any K ′ ∈ Gτ , where Gτ
denotes the gains-from-trade cash balance processes which could be achieved by trading
in the market starting with zero wealth at time τ . Concerning the Gτ we shall assume13

that

(c-m) each Gτ is convex;

(l-m) for each x ∈ JτK,
Gτx = {KI[x,T ] : K ∈ Gτ};

(dc-m) for each τ ≤ σ ∈ O if Kσ denotes14 the cash balance process K stopped at σ,
we have

Gτ = {Kσ +K ′ : K ∈ Gτ ,K
′ ∈ Gσ}

Now the cash balance valuation given access to this market will be via

Πx(K) ≡ sup{πx(K +K ′) : K ′ ∈ Gx}. (29)

Once again, there is no guarantee that Πx(0) = 0, but if we define

0Πx(K) ≡ Πx(K)−Πx(0), (30)

then the operators ( 0Πx)x∈T do have this property (4). As in the case of risk-sharing,
the quantity Πx(0) is the value to the agent of being granted access to the market at
vertex x.

Theorem 4 The valuations ( 0Πτ )τ∈O satisfy the axioms (C), (L), (CL), (M), (DC),
and (TI).

13Recall the definition (7) of τx.
14Formally, Kσ

z = Ky if z º y ∈ JσK; = Kz otherwise.
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Proof. As before, all of the properties except for (DC) are obvious. To prove (DC),
we use properties (DC) for the πx and (dc-m) to develop

Πx(K) = sup{πx(K +K ′) : K ′ ∈ Gx}

= sup{πx((K +K ′)I[x,σ) + πσ(K +K ′)I[σ,T ]) : K
′ ∈ Gx}

= sup{πx((K +K ′)I[x,σ) + {Πσ(K) +K ′
σ}I[σ,T ]) : K

′ ∈ Gx}. (31)

On the other hand,

Πx(KI[x,σ) +
0Πσ(K)I[σ,T ]) = sup{πx(KI[x,σ) +

0Πσ(K)I[σ,T ] +K ′) : K ′ ∈ Gx}

= sup{πx((K +K ′)I[x,σ) +
0Πσ(K)I[σ,T ] +K ′I[σ,T ]) : K

′ ∈ Gx}

= sup{πx( (K +K ′)I[x,σ) +
0Πσ(K)I[σ,T ] +

+πσ(K
′I[σ,T ])I[σ,T ] ) : K

′ ∈ Gx}

= sup{πx( (K +K ′)I[x,σ) +
0Πσ(K)I[σ,T ] +

+(Πσ(0) +K ′
σ)I[σ,T ] ) : K

′ ∈ Gx} (32)

since when we maximise πσ(K
′I[σ,T ]) over K

′ we get Πσ(0) +K ′
σ. Comparing (31) and

(32) establishes property (DC) for the operators ( 0Πτ )τ∈T .

6 Conclusions.

This paper has approached the problem of convex risk measurement in a dynamic setting
from a slightly unconventional starting point; instead of trying to work with acceptance
sets, we begin with valuation operators satisfying certain axioms which seem to us to
be natural. Our notion of preference does not reduce to a simple valuation of all the
proceeds of the cashflow collected at the end, but genuinely accounts for the (obvious)
fact that you would prefer to have $1M today rather than the value of $1M invested at
riskless rate in five years from now.

In the simplest situation, where the sample-space is finite, we show how a family of
pricing operators obeying our axioms can be decomposed into (and reconstructed from)
a family of one-period pricing operators which are much easier to grasp. There is a
corresponding decomposition of the dual pricing functions.

Allowing a firm to spread risk among a number of subsidiaries leads to risk-sharing
solutions; the firm derives benefit from risk sharing, and, remarkably, the risk-sharing
valuations which arise satisfy exactly the same set of axioms satisfied by the initial
valuations.

We have seen also that the risk sharing that arises will be stable over time; if at time
0 the firm chooses how to spread risk among its subsidiaries, then no matter how the
world evolves, at all later times it will continue to be satisfied with the cash balances
that it originally selected.

20



We study also what happens when a firm is allowed access to a financial market.
Assuming some natural properties of the market, the conclusions are similar to the
risk-sharing problem; the firm derives a fixed benefit from being allow access to the
market, but beyond that it values cash balance processes according to modified valuation
operators which satisfy the same axioms.
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A Appendix.

A.1 Proof of Theorem 1.

Let us consider the filtered probability space (Ω, (Ft)t≥0, P ). For any T > 0, the map
A 7→ π0T (IA) defines a non-negative measure on the σ-field FT , from the linearity, pos-
itivity and continuity properties of our pricing operator.

This measure is moreover absolutely continuous with respect to P in view of (A2).
Hence by the Radon-Nikodym theorem, there exists a non-negative FT -measurable ran-
dom variable ζT such that

π0T (Y ) = E[ζTY ]

for all Y ∈ L∞(FT ).

Moreover, (A2) implies that P[ζT > 0] = 1.

We finally use the consistency condition (A3) as follows. Let Y ∈ L∞(FT ), then by
definition, πtT (Y ) ∈ L∞(Ft). For any X ∈ L∞(Ft),

π0t(XπtT (Y )) = E[XζtπtT (Y )]

= π0T (XY )

= E[XY ζT ]

Since X ∈ L∞(Ft) is arbitrary, we deduce that

πtT (Y ) =
1

ζt
Et[ζTY ]

which shows that the pricing operators πst are actually given by the risk-neutral pricing
recipe (3) described in Theorem 1, with the state-price density process ζ.

The state-price density process is often thought of as the product of the discount factor

exp
(

−
∫ t
0 rsds

)

and the change-of-measure martingale.
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[16] H. Föllmer and A. Schied. Convex measures of risk and trading constraints. Finance
and Stochastics, 6:429–447, 2002.
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