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Overview

1) The Fundamental Error of Financial Modelling

2) APT and equilibrium pricing compared

3) APT: issues and examples

4) EPT: representative agent and terminal wealth

5) EPT: many agents, terminal wealth.

Reflections on modelling, arbitrage, and equilibrium – p. 2/13



The Fundamental Error of Financial Modelling

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

• Modelling forward interest rates (HJM approach) imposes conditions on the

drifts;

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

• Modelling forward interest rates (HJM approach) imposes conditions on the

drifts;

• Market models fit to swaption prices ...

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

• Modelling forward interest rates (HJM approach) imposes conditions on the

drifts;

• Market models fit to swaption prices ... and then fit a quite different model

to caps;

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

• Modelling forward interest rates (HJM approach) imposes conditions on the

drifts;

• Market models fit to swaption prices ... and then fit a quite different model

to caps;

• The implied vol surface is derived, from the asset price process;

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

• Modelling forward interest rates (HJM approach) imposes conditions on the

drifts;

• Market models fit to swaption prices ... and then fit a quite different model

to caps;

• The implied vol surface is derived, from the asset price process; treating it as

a random field and imposing dynamics on it can lead to inconsistencies;

Reflections on modelling, arbitrage, and equilibrium – p. 3/13



The Fundamental Error of Financial Modelling

The FEFM is to directly model quantities which are derived, rather than the

fundamental quantities from which they are derived.

• Model defaults of many names by firstly fitting individual names to CDS data,

and then postulating some (copula) dependence between them;

• Modelling forward interest rates (HJM approach) imposes conditions on the

drifts;

• Market models fit to swaption prices ... and then fit a quite different model

to caps;

• The implied vol surface is derived, from the asset price process; treating it as

a random field and imposing dynamics on it can lead to inconsistencies;

• The BS model of a stock takes the stock price as fundamental, whereas the

fundamental is the dividend process.
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APT and equilibrium pricing compared

• Equilibrium prices are ‘arbitrage free’ - but the set of AP systems is much

bigger than the set of EP systems;

• In APT, start with the price processes, and find out about the pricing

measure;

in EPT, start with the pricing measure - the marginal utility of aggregate

consumption - and find out about the (equilibrium) prices;

• In EPT, need agents’ preferences and endowments, assets and their dividends

- a lot of modelling primitives to specify, and few explicit multi-agent examples;

• APT requires fewer modelling primitives, and admits many tractable examples

... but the theory is problematic in various ways.

Equilibrium prices satisfy more properties than just absence of arbitrage; once

we recognise this, the problems of APT vanish.
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FTAP in finite discrete time (Kreps, Pliska, Harrison, Ross, D-M-W ..):

NA⇔ there exists an EMM

REMARK. The theorem is unaffected by equivalent change of measure; and

change of numeraire.

‘Doubling’ example. The price processes

Bt = 1 (0 ≤ t ≤ T )

St = Wt + at (0 ≤ t ≤ T )

allow the doubling strategy (w0 = 0):

dwt =
I(t ≤ τ)√

T − t
dSt (τ ≡ inf{t : wt > 1})

Usually restrict to admissible wealth processes, bounded below in some way:

for example,

wt ≥ −a ∀t
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APT: issues and examples, 2

The notion of boundedness should be invariant under equivalent change of

measure; and change of numeraire ...

so perhaps the notion of boundedness should be modified to

wt ≥ −Qt ∀t

for some non-negative gains-from-trade process Q?

Loewenstein-Willard: if Q is a suicide strategy, then there can be arbitrage with

this extended notion.

Why was no such bound required in the finite discrete-time FTAP??

FTAP (Delbaen-Schachermayer):

NFLVR⇔ there exists an equivalent σ-martingale measure Q

We would like to have

St = EQ
t [ST ],

but that’s not what we get.
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V ≡ {η ∈ L0(FT ) : for some ε > 0, U(∆ + tη) ∈ L1 ∀|t| ≤ ε}

of tradable contingent claims. Assume

(A) δ ∈ V , and that there is a strictly positive ν ∈ V
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• Identical agents, looking to max EU(c), where c is consumption at time T ;

• Assets 1, . . . , K delivering dividends δ = (δ1, . . . , δK) at time T , in net supply

q = (q1, . . . , qK) per agent.

Equilibrium problem: find (equilibrium) price process (St)0≤t≤T such that when

agents behave ‘optimally’ the markets clear - c = ∆ ≡ q · δ .
Assuming U(∆) ∈ L1, introduce the vector space

V ≡ {η ∈ L0(FT ) : for some ε > 0, U(∆ + tη) ∈ L1 ∀|t| ≤ ε}

of tradable contingent claims. Assume

(A) δ ∈ V , and that there is a strictly positive ν ∈ V

For any η ∈ V , we have marginal utility pricing:

lim
t→0

t−1E[U(∆ + tη) − U(∆)] = E[U ′(∆)η].

Note we do not require U ′(∆) ∈ L1; if 1 ∈ V , then certainly U ′(∆) ∈ L1, but this

is not assumed.
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EPT: asset prices, wealth, and optimization

Define the (marginal) price of asset k in terms of the numeraire:

Sk
t ≡ Et[ U ′(∆)δk ]/Nt

where

Nt ≡ Et[ U ′(∆)ν ].
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Define the (marginal) price of asset k in terms of the numeraire:

Sk
t ≡ Et[ U ′(∆)δk ]/Nt

where

Nt ≡ Et[ U ′(∆)ν ].

The agent generates a wealth process w by investing in the assets according to

some self-financing portfolio process θ: (ηt is holding of numeraire at time t)

wt = ηt + θt · St = w0 +

Z

(0,t]
θu · dSu,
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some self-financing portfolio process θ: (ηt is holding of numeraire at time t)
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Z
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θu · dSu,

where θ ∈ E ≡ ∪nEn, and

En ≡ {
n

X

i=1

Zi(Ti−1, Ti] : 0 ≤ T0 ≤ . . . ≤ Tn ≤ T stopping times, Zi ∈ bFTi
}.
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Sk
t ≡ Et[ U ′(∆)δk ]/Nt

where

Nt ≡ Et[ U ′(∆)ν ].

The agent generates a wealth process w by investing in the assets according to

some self-financing portfolio process θ: (ηt is holding of numeraire at time t)

wt = ηt + θt · St = w0 +

Z

(0,t]
θu · dSu,

where θ ∈ E ≡ ∪nEn, and

En ≡ {
n

X

i=1

Zi(Ti−1, Ti] : 0 ≤ T0 ≤ . . . ≤ Tn ≤ T stopping times, Zi ∈ bFTi
}.

We restrict the portfolio, not the wealth process!

It is elementary to prove that Ntwt is a martingale; and if we start from

w0 = q · S0, we can easily prove that the portfolio process θt ≡ q is optimal.
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EPT: optimality

The optimization problem now is to

sup
θ∈E

E[ U(νwT ) ].
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E[ U(νwT ) ].

With conjectured optimal θ, terminal wealth is q ·ST in the numeraire, νq ·ST = ∆

in the consumption good.
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EPT: optimality

The optimization problem now is to

sup
θ∈E

E[ U(νwT ) ].

With conjectured optimal θ, terminal wealth is q ·ST in the numeraire, νq ·ST = ∆

in the consumption good. For any other θ with terminal wealth wT , we have

E[ U(νwT ) ] ≤ E[ U(∆) + U ′(∆)(νwT − ∆) ]

= E[ U(∆) + U ′(∆)ν(wT − q · ST ) ]

= E[ U(∆) + NT wT − NT q · ST ]

= E[ U(∆) ].
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EPT: optimality

The optimization problem now is to

sup
θ∈E

E[ U(νwT ) ].

With conjectured optimal θ, terminal wealth is q ·ST in the numeraire, νq ·ST = ∆

in the consumption good. For any other θ with terminal wealth wT , we have

E[ U(νwT ) ] ≤ E[ U(∆) + U ′(∆)(νwT − ∆) ]

= E[ U(∆) + U ′(∆)ν(wT − q · ST ) ]

= E[ U(∆) + NT wT − NT q · ST ]

= E[ U(∆) ].

Theorem. The following are equivalent:

(i) Prices (St)0≤t≤T are equilibrium prices for a representative agent economy

with utility from terminal consumption, satisfying (A);

(ii) There exists a positive martingale N such that

NtSt is a martingale.
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EPT: the converse

Given N and S, seek ν > 0, ∆ and U such that

NT = U ′(∆)ν, NT ST = ∆U ′(∆).
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EPT: the converse

Given N and S, seek ν > 0, ∆ and U such that

NT = U ′(∆)ν, NT ST = ∆U ′(∆).

This implies that ST = ∆/ν. Now choose a concave C2 function U such that

1 ≤ U ′ ≤ 2 and such that x 7→ xU ′(x) is strictly increasing.
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The equation NT ST = ∆U ′(∆) has a unique solution ∆, which has the same sign

as ST . Define

ν =

8
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:
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Because U is Lipschitz, we have

|U(∆ + εν) − U(∆)| ≤ 2ε|ν| ≤ 2ε|NT | ∈ L1

and so ν ∈ V . Similarly, ∆ ∈ V .
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NT = U ′(∆)ν, NT ST = ∆U ′(∆).

This implies that ST = ∆/ν. Now choose a concave C2 function U such that

1 ≤ U ′ ≤ 2 and such that x 7→ xU ′(x) is strictly increasing.

The equation NT ST = ∆U ′(∆) has a unique solution ∆, which has the same sign

as ST . Define

ν =

8

<

:

∆/ST (ST 6= 0)

1 (ST = 0)

Because U is Lipschitz, we have

|U(∆ + εν) − U(∆)| ≤ 2ε|ν| ≤ 2ε|NT | ∈ L1

and so ν ∈ V . Similarly, ∆ ∈ V .

REMARK: a similar analysis works for finite horizon, with intermediate consumption.
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≡
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t

is the same for all j. Assume that each δk is in every Vj . If there is an

equilibrium, we have θj such that

ν−1cj = wj
T

= wj
0 +
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(0,T ]
θj
u · dSu,

but is θj ∈ E?

Reflections on modelling, arbitrage, and equilibrium – p. 11/13



EPT: many agents

Agent j seeks to max E[ Uj(cj) ], j = 1, . . . , J .

In equilibrium, get allocation (cj) such that
PJ

j=1 cj = ∆ =
PK

k=1 qkδk and

equilibrium prices Sj
t such that

Sk
t =

Et[ U ′
j(cj)δk ]

Et[ U ′
j(cj)ν ]

≡
Et[ U ′

j(cj)δk ]

Nj
t

is the same for all j. Assume that each δk is in every Vj . If there is an

equilibrium, we have θj such that

ν−1cj = wj
T

= wj
0 +

Z

(0,T ]
θj
u · dSu,

but is θj ∈ E? Not likely!

Reflections on modelling, arbitrage, and equilibrium – p. 11/13



EPT: many agents

Agent j seeks to max E[ Uj(cj) ], j = 1, . . . , J .

In equilibrium, get allocation (cj) such that
PJ

j=1 cj = ∆ =
PK

k=1 qkδk and

equilibrium prices Sj
t such that

Sk
t =

Et[ U ′
j(cj)δk ]

Et[ U ′
j(cj)ν ]

≡
Et[ U ′

j(cj)δk ]

Nj
t

is the same for all j. Assume that each δk is in every Vj . If there is an

equilibrium, we have θj such that

ν−1cj = wj
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E so that
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Nj
t

is the same for all j. Assume that each δk is in every Vj . If there is an

equilibrium, we have θj such that

ν−1cj = wj
T

= wj
0 +

Z

(0,T ]
θj
u · dSu,

but is θj ∈ E? Not likely! So we have to allow θj to be a limit of processes in

E so that
E[ Uj(ν(wj

0 +

Z

(0,T ]
θj
u · dSu)) ] = sup

θ∈E

E[ Uj(cj) ]

Is Njwj a martingale? If it is, then we get optimality just as before.
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EPT: finding multi-agent equilibria

How would we construct an equlilbrium from Uj , δ, q and agents’ initial holdings?
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λjUj(xj) :
X

j

xj = c}

and do single agent optimisation with Ū , adjusting λ to match initial holdings.
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use some algorithmic selection of an equilibrium (Nash bargaining solution?) ...
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EPT: finding multi-agent equilibria

How would we construct an equlilbrium from Uj , δ, q and agents’ initial holdings?

Central planner? Define

Ū(c) ≡ sup{
X

j

λjUj(xj) :
X

j

xj = c}

and do single agent optimisation with Ū , adjusting λ to match initial holdings.

• U ′
j(cj) = αjζ for all j, so all agents price all tradables the same ..

• Individual agent optimisations?

Discrete time? Single period is classical Edgeworth box - probably need to

use some algorithmic selection of an equilibrium (Nash bargaining solution?) ...

How would this look as we thicken up the time grid?
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