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1 Introduction

Most term structure models to date fall into one of two classes: either one
models the spot rate process (r,t > 0), as in Vasicek [Vas77], Cox, Ingersoll
and Ross [CIR85], Longstaff and Schwartz [L.S91]; or alternatively one models
the process of forward rates, as in Ho and Lee [HL86], Heath, Jarrow and Mor-
ton [HJM92|, Babbs [Bab90]. However, as a recent paper of Rogers [Rog95]
shows, there are considerable advantages to a third approach, called the poten-
tial approach. The idea here is that the fundamental is the state-price density
(¢, t > 0), a positive supermartingale, in terms of which the bond prices have
the simple expression .

P(t,T) = E.(¢r)/ G (1.1)
where 0 < ¢t < T, and P(t,T) denotes the price at time ¢ of a zero-coupon
bond which pays out 1 at time 7', and P is a reference measure. This approach
was also advocated by Constantinides [Con92], though this paper did not
develop one of the most exciting consequences, namely the simplicity with
which exchange rates can be modelled. As Rogers [Rog96] shows, if at time
t one unit of country j’s currency is worth Y} units of country i’s currency,
then under certain assumptions (satisfied in the complete markets case)

Y =Y /¢ (1.2)

this important observation was also made by Saa-Requejo [SR93]. To obtain
a wide family of models, then, one needs to have a way of generating positive
supermartingales, and [Rog96] showed how one could make use of classical
Markov process theory to generate such examples. By taking a Markov process
(X, t > 0) with resolvent (Ry)xso, the recipe

Gt =e “"Rag(Xe) (1.3)
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defines a positive supermartingale whenever the function g is positive and
suitably integrable. Different choices of g and « give a wide range of possible
potentials, even within the context of a fixed Markov process. Using this
framework, the bond prices can be compactly expressed as

P(0,t) = E*(e"*" Rag(Xy)) / Rag(Xo), (1.4)

where P* denotes the law of the process started at z. Further simple formulae
for other derivative prices can be obtained. One even has that the spot rate
process can be given as

9(X3)

Rag(Xt)'

The objective of this paper is to examine the fit of a few such models to
data. Throughout, we shall take the underlying Markov process to be a two-
dimensional (Gaussian) diffusion X solving

(1.5)

Ty =

dXt == th - BXtdt, (16)

where B is a 2 X 2 matrix, and W is a Brownian motion in two dimensions.
It should be noted that what we are attempting here, namely to explain si-
multaneously the yield curves in two countries and the exchange rates between
them, using a model with only two underlying sources of noise, is ambitious;
other models would introduce at least one source of noise for each country and
one for each exchange rate.
The data we used to fit the model was daily yield curve data for USD and
GBP, along with daily data for the exchange rate between the two currencies.
We give more details on the data in Section 2.
The reason to restrict attention to this particular Markov process is that the
bond price (and the prices of other derivatives more generally) is expressed as
an expectation of a function of the process X at some later time, and such
expectations are comparatively simple in this case. Indeed, we have that under
pz‘
t
X, ~ N Bz, V), V,= /0 e *B(eB) s, (1.7)

as is easily shown. Thus the calculation of prices can commonly be reduced
to an integration with respect to a Gaussian density; often, the bond prices
can be given in closed form, as examples in [Rog95] demonstrate. Neverthe-
less, it is important to emphasise that the method is not restricted to this one
diffusion, nor even to any diffusion; it may well turn out in practice that we
should take as the underlying process a finite Markov chain, in which case the
computations would inevitably be numerical.



Having chosen the underlying Markov process, we now have to pick the func-
tion g > 0, or, more conveniently, f = R,g. Familiar properties of the resol-
vent then allow us to recover g from f by ¢ = (o — G)f, and [Rog95| gave
numerous examples. In this paper, we shall fit the models where for some
2-vector ¢, some 2 x 2 positive-definite symmetric matrix ¢ and real positive
v chosen suitably, f takes one of the forms:

() f@)=esp(5(e o) Qo))

(B)  f@)=7+5—0) Qo)

Before getting into the details of these models, which we shall attend to in
Section 3, we describe the general methodology used in the fitting procedure.
In all cases, we are dealing with a family of models parametrised by some
vector f. Some of the components of § will be parameters relating to the
movement of the underlying Markov process X (so in our example, the entries
of the matrix B, or, more usefully, the eigenvalues and unit eigenvectors of
B), the remainder will be components relating to the functions used in the
potential description. On each day, we will have the market values of some K
observables; let us denote the market value of the jth observable on day n by
v/, and let us denote the model price of the jth asset by 37(z, ), a function of
the state x of the Markov process, and the parameter vector 6. If we simply
want to fit day-by-day, allowing different values of the parameters each day,
then on day n we can minimise F, (6, X) defined by

FA0,X) = 5 35— v'(@.0)

=1

where the ¢; are positive weights which are at our disposal. The observables yZ,
do not have to be prices; they could be implied volatilities, log-prices, histor-
ical volatilities, or any other observable whose value can be computed within
the model, and which we care to use for the calibration. The results of the
day-by-day fits to the data are discussed in Section 4.

Allowing the parameters to change each day is a violation of the model as-
sumptions; we should insist that they are the same for all time. Nevertheless,
it is not reasonable to imagine that the parameters in a model for interest
rates remain absolutely unchanged over very long periods, so for a more so-
phisticated analysis we will allow the parameters to shift gradually with time;
as is to be expected, the more we force the parameters to remain stable, the



poorer the fit to the data. If we abbreviate (z7,67) = 27, then what we shall
do is to minimise each day the function F,(z) defined by

1 & 2 1 ~ \TTr—1 ~
Egz )+§<Z_/«Ln) Vn (Z_:un)a

where the vectors fi, and the matrices V,, are defined recursively, as is explained
in detail in Section 5. Section 6 discusses the results of this fitting procedure.

2 The Data

The US yield curve data (figure ?7) and the GBP/USD exchange rate(figure
??7) were obtained from the World Wide Web site of the Federal Reserve Bank
of Chicago. 2. The data that has been used covers the period January 1991
to November 1991. For each day we have 9 values corresponding to different
maturities for the bonds. The maturities are 3, 6 months, 1, 2, 3, 5, 7, 10, 30
years. The UK yield curve data (figure ??) was obtained from S. Babbs and
it covers the same period of time and has the same maturities.?

Let us define some notation for the data that will be used later on. Let M=[.25
51235710 30] be the vector that represents the maturities of the bonds
under consideration; let yYS (resp. yUX) be the value of the yield on the n-th
day for the US (resp. UK) bond with maturity M (i), and y~* the logarithm
of the foreign exchange rate on the n-th day divided by the foreign exchange
rate on the (n — 1)-th day.

3 The Models

3.1 Quadratic

Let us consider the case (see [Rog95]) in which the function f : R — R is
given by

flz)=~+ %(x —o)"'Q(z —¢) (3.8)

and the d-dimensional diffusion (X, ¢ > 0) is the solution of the linear stochas-
tic differential equation

dXt =-—-B Xt dt + th X() = 2y (39)

Zhttp://gopher.great-lakes.net:2200/1/partners /ChicagoFed/finance
3For simplicity the dates not in common have been eliminated from both countries



where () and B are constant d x d matrices with ) symmetric and positive

definite, and ¢ is a constant d-dimensional vector.

If we denote by G the infinitesimal generator of the diffusion, the function

g = (o — G)f is then given by

1 1
g(z) = ay — %trQ + %acTQc + 5(3: —0)'S(x —v) — ivTSU

where

S=aQ+BTQ+ QB

and
v =S""(aQc+ B"Qc)

If we choose v so that

tr @ + vl Sv
Y= -

L

—c Qc
2a 2 @
then the spot rate process is given by

9(Xy) (X —v)TS(X,—v)

M= R T X% )

the zero-coupon bond prices are given by

exp{—at}

1 T
f(330) (7 + E(tr(Q V;f) + ey Q,ut))

P(0,t) =
where
wy = exp{—tB} zq — ¢,
t
Vi= [ exp{-sB}(exp{-sB})" ds,
0
and the state price density is given by

(Xi = 0)TQ(X; — ¢)
(Xo —)TQ(Xo — )

Yt3
Cor = exp{—at}—2
V3

3.2 Exponential quadratic

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Let us consider a different model (see example 2 in [Rog95]); the function

f: R* = R is defined by

f(@) = (3 (e - Q- )

(3.19)



and the diffusion (Xy,¢ > 0) is the solution of the linear stochastic differential
equation 3.9.
In this case the function g = (o — G) f is given by

1
9(x) = f(2) (F(& = S70)"S(z = S71)) (3.20)
where
S=B'"Q+QB- @, v=(B"-Q)Qc (3.21)
and the parameter o has been chosen to be
1
o= i(tr(Q) +1Qc]® + v S ) (3.22)
These choices give a squared-Gaussian spot rate process
1
Ty = §<Xt — S_l'U)TS<Xt — S_l'l)) (323)

and explicit formulas for the computation of the T-forward measure (see
[Rog95]) and of the zero-coupon bond prices that for a maturity ¢ are given
by

P(0,t) = exp{—at} det(I — QV,)"? exp(%uf(l —QV;) 'Qu — %uoTQuo)

(3.24)

where
ws = exp{—tB} zo — ¢, (3.25)
Vi = /Ot exp{—sB}(exp{—sB})T ds, (3.26)

and I denotes the identity matrix. Moreover if we consider several countries
at once and we assume the same diffusion and the same values for the entries
of the matrix @ for all of the countries, then we get that the exchange rates
between two countries ¢ and j are log-Brownian processes

yii — %”g—{- — Y exp((af — o) t+ (¢ — )Q(Xs — Xp)) (3.27)

4 Day-by-day Fits

4.1 Quadratic

We are interested in modelling the interest rate of the two countries (US and
UK) and the exchange rate of the currencies. We assume that there is only one



two-dimensional diffusion driving the evolution of the three processes (same
B and X, d = 2) and that @ is diagonal and the same for both countries.
The exchange rate process is obtained as the quotient of the state price den-
sities in the single countries (see 1.2).

We have 12 parameters 8 = [\, Ay, B1, B, @1, @2, 75, Y5, VK TE VS VK]
and a 2-dimensional diffusion X. The first 6 parameters characterize the two
matrices B and Q: ¢; and ¢, are the diagonal elements of @; A; and A\, are
the eigenvalues of B, and ; and (3, are angles such that if we define

| cosBi cos By
R B [ sin ﬁl Sil’l ﬂz ] (428)
then

_ At 0 -1
B—Rlo )\Z]R (4.29)
Let us denote by yY5(6, X) and yYX (0, X) the model value of the yield at
the i-th maturity in the n-th day for the US and the UK respectively, and
by y¥X(6, X) the logarithm of the ratio of the state price densities in the two
countries

UK
X0, X) = log{g” t} (4.30)
tn 17tn

The fitting is obtained by a minimization of the function

Fo(0,X) = 30w (yn =y (0, X))
+ i w (e =y (0, X)) + wX (g X =y ¥ (0, X))?

with respect to (0, X) using the NAG routine E04JAF, repeated for the 200
days under consideration (i.e. n =1,..,200), where the weights are chosen to
be w!S = w¥* = 15000, (i, j = 1,..,9) and w"™ = 450000.

Figures 7?7 and 7?7 show the modulus of the residuals of the fitting for every
maturity in the 200 days for the two countries; the mod-residuals are sorted
by order of magnitude to give a clearer idea of the errors. Figure 77 shows the
observed data and the fitting curve for the foreign exchange rate (there are
indeed two curves in the top picture). The model fitted is completely non-rigid;
different parameters are fitted each day. If we follow the procedure described
in the Introduction, we must expect the quality of the fit to deteriorate.

(4.31)

4.2 Exponential Quadratic

We have 12 parameters 6 = [\, Aa, B1, B2, 475, 9%, qVK, YK VS Y5 VK JKY
and a 2-dimensional diffusion X. The ﬁrst 8 parameters characterlze the ma-
trices B, QUS and QUK: we assume QU° and QUK to be diagonal matrices



and let q%') and qé') be the values of the elements on the diagonal of QV); Ay,

Ao, B1 and B3 have been defined in the previous section.
The functions y are defined (using the current model) as in the previous section
and the day-by-day fitting is obtained by a minimization of the function

F,(0,X) =% wlSls —yUs(6, X))?
+ Y w K (YUK — yUK(0, X))? + w' N (yh X — yEX (0, X))?

with respect to (6, X) using the NAG routine E04JAF, repeated for the 200
days under consideration, where the weights are chosen to be w/% = w{¥ =
30000, (4,5 = 1, ..,9) and w¥* = 94000

Figures 7?7 and ??7 show the ordered mod-residuals of the fitting for every
maturity in the 200 days for the two countries; Figure 7?7 shows the observed
data and the fitting curve for the foreign exchange rate.

(4.32)

5 Approximate Kalman Filtering

Although it may look appealing to perform the fitting procedure as illustrated
at the end of the previous section, it is nevertheless inconsistent with the the-
oretical model. We are in fact allowing the parameters to move from day to
day, while the model was requiring constant parameters. We need therefore
to constrain the parameters in the minimization by adding a penalty for fluc-
tuations of their values.

We do this by using the approximate Kalman filtering approach that we out-

line in what follows.
VA 7 A B
()~ (%) [ 2]) 639

(i) If
is a multivariate Gaussian vector, then it is well known that

E(Z|Y)=pu+ BD (Y —v) (5.34)
and
var(Z|Y) = A— BD'BT (5.35)
(ii) It is an easy exercise to prove that the minimization problem
min (s, y), (5.36)
where
1 x—uT A B] T — W



is solved by
¥ = pu+ BD ' (y —v), (5.38)

and that the Hessian of ¢ with respect to x at the minimizing value z* (and,
indeed, everywhere) is
(A—-BD'BT)™! (5.39)

(iii) Thus the conditional distribution of Z given Y can also be obtained by
solving the minimization of the quadratic loss.
(iv) Suppose that we know Zy, 15 ~ N(ftn—1,Vn-1) and that Z solves the
SDE

dZy = b(Zy) dt + o dW;, (5.40)

where b is a smooth function, and ¢ is constant. (The constancy of ¢ is not
critical to the argument, but we make this assumption because it is all we shall
need, and it simplifies the development.) If 6 > 0 is small, we have (neglecting
second order terms in £ = Z,5 5 — tn—1)

Tns = Zing—5 + 0 b(Zns_5) + 0 (Wng — Wns_s) + 0(62) (5.41)

)

N

= HUn—1 + 56(/1%—1) + (I + 5Db(un—1)) 6 +o (Wn6 - Wné—&) + 0<5

so that now we have approximately

Zns ~ N(fin, Vz) (5.42)
where
ﬁn = MUn—1 + 5()(/,6”_1) (543)
V=T +6Db(pin1)) Voot I+ 6 Db(tn_1))" + 600" (5.44)
(v) If we now observe
Y,=a+KZ,s+¢ (5.45)

where € is some independent zero-mean (Gaussian noise, with covariance V,
we would find the maximum likelihood estimate of Z by finding

1 1 N
min (¥, —a - K2)'V (Y, —a—Kz)+ (@ i)V (2 = fi)  (5.46)

The minimizing value u, will be the conditional mean of Z,,, and the Hessian
evaluated at p, will be V!
(vi) If we observe

Y, = f(Z.s) + ¢, (5.47)



where f is no longer necessarily linear, we assume that the analogue of step
(v) may be used; we find

min (Y = f@) VY = J(@) + 50 = ) VMo = ) (549

and set u, to be the minimizing value, and V! to be the Hessian at j,.

6 Fits of Constrained Models

6.1 Quadratic case

In this Section we apply the approach, described in the previous Section, to the
models that are considered in this paper. We suppose that the observations
on the prices are not exact and that the values of the components of 6 are
slowly moving. We therefore have a 14-dimensional random process (Z; =
(0, X1),t > 0) whose dynamics is given by (compare with equation 5.40)

{ db, = & dW, (6.49)

and a 19-dimensional random process (Y;,¢ > 0) that models the price obser-
vations as actual price plus Gaussian noise given by ¢ ~ N(0,V,) (compare
with equation 5.47).

Note that, in order to apply this method, we must assume some values for &
and V.. The choice that we make influences the outcome of the procedure:
there is indeed a trade off between accuracy of the fitting and stability of the
parameters (the latter is after all one of the reasons for introducing this ap-
proach).

We apply the procedure to the quadratic model assuming V., and & diago-
nal with (diag(V.)); = (15000)7%, (j = 1,..,18); (diag(V.))1s = (500000)1,
diag(7); = 2007, (1 =1,..,10), and diag(7); = 107}, (1 = 11,12).

Figures 77, 7?7, and 7?7 show the results of the fitting for the constrained
quadratic case and Figure 7?7 shows the values of the parameters in the period
that has been considered.

As a by-product of this approach we obtain also confidence intervals for each
yield. Using a first order Taylor expansion we see that an observable f(z)
is approximately a normal random variable with mean f(u,) and variance
(V)T Voo (Vf(11n)) where the conditional mean u, and the conditional
covariance V,, are obtained through the minimization as illustrated in section
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5. We can therefore compute

1

(V£ ()" Vo (V£ (1)) (6.50)

and obtain the half length of the one standard deviation confidence interval.
Figures 7?7, 7?7 show the data, the fitting curves and the confidence intervals
for the bonds with 3 months, 1, 3, and 10 years maturities in the two countries.
The dashed line is the point estimate of the yield, the middle solid line is actual
yield, and the outer solid lines are the ends of the confidence intervals.

6.2 Exponential quadratic case

We now apply the approximate Kalman filtering method described above to
the exponental quadratic model assuming V; and & diagonal with (diag(V;)); =
(30000)7%, @ = 1,..,18; (diag(V:))1e = (120000)7%; (diag(5)); = 1507, ¢ =
1,..,12.

Figures 7?7, 7?7, and 7?7 show the results of the fitting for the constrained ex-
ponential quadratic case and Figure 7?7 show the values of the parameters.
We can again find confidence intervals using (6.50). Figures ??, 7?7 show the
data, the fitting curves and the confidence intervals for the 3 months, and for
the 1, 3, 10 years maturities in the two countries.

Comparing the constrained and unconstrained fits, we find that the fit of
the constrained model to the yield curves is 3-4 times as bad. Four times
out of five the day-by-day fits get within 6 bp in the US and 4 bp in the UK.
There appears to be no marked preference for quadratic as against exponential
quadratic in the fit of the yields, but the quadratic seems to do a bit better
on exchange rates.

As for parameter stability, most of the parameters of the quadratic model
display remarkable stability; only B(1,2) and g» seem a bit unsteady, but
this can be understood when we notice that both are quite small (go ~
102 ¢, |B(1,2)| ~ 2% 1072 B(2,2)) . By contrast, the exponential quadratic
model displays less impressive parameter stability.

The confidence intervals generally cover the actual data very effectively, though
they are quite wide (30-70 bp for the quadratic model, 60-120 bp for the ex-
ponential model). This is a confirmation of the integrity of the procedure,
though a tighter fit would be desirable.
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7 Conclusions

We have fitted simple two-factor potential models to yield curve data in the US
and the UK, and to the exchange rates between them. The fit is not, of course,
perfect, but it is similar to what one obtains when fitting a time-homogeneous
one factor model to one country’s yield curves. A perfect fit can only be guar-
anteed by using a time-inhomogeneous model and fitting it afresh each day;
the consistency of this is highly questionable, but is conventionally ignored by
those who practice it. Time-inhomogeneous versions of potential models can
be devised; for example, Flesaker and Hughston [FH96], study (amongst oth-
ers) a class of models which can be described by writing the state-price density
as (; = a(t) + b(t) My, where a and b are positive decreasing functions, and M
is a positive log-Brownian martingale. It is probably preferable to think of a
pricing routine as a package which outputs a range of prices (i.e. a confidence
interval) rather than a single price. After all, we only have estimates, never
true values, and a procedure which fits exactly to input data and pretends
there is no error is liable to be severely misleading.

There are three clear directions for further research. The first is to use the fit-
ted models to price derivatives, and this we intend to do once we can get hold of
clean derivative price data. The second is to extend to more than two factors;
the fit we have obtained with two factors is reasonable but not marvellous,
and we can hope for better with a more flexible model. The third direction is
to involve more countries in the model, and this must be the eventual test of
the usefulness of the approach. Even with more factors we do not necessarily
expect a miraculous fit, because of the nature of the data, but if such models
can adequately explain the systematic part of the data, we may then address
the actual data as a perturbation of an underlying time-homogeneous model,
and this is structurally more satisfactory than day-by-day fitting.
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