Evaluating the optimal solution to a
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Abstract. Finding the optimal investment/consumption policy in a problem with transactions
costs is not an easy matter. In their seminal paper, Davis & Norman (1990) take a simple portfolio
optimisation problem which reduces to one dimension; finding that there is no closed-form solution,
they propose an effective numerical scheme for computing the solution to the HJB equation. We
consider a variant of this problem, in which the diffusion parameters and the riskless rate depend
on a finite Markov chain. In this case, the numerical scheme of Davis & Norman appears to
be incapable of generalisation, as the HIJB equation becomes a coupled system. Nonetheless, we
shall show how approximations to the solution can be calculated using occupation measures for
controlled Markov processes.
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1 Introduction

In this paper we consider the problem of selecting a portfolio to maximize the
expected discounted utility of consumption

E [/Ooo e—PtU(Ct)dt] (1.1)

where the portfolio invests in a riskless bank account B and a risky asset S which
satisfy

dBt = TtBtdt
dSt = St</,l,tdt + Utth).

Here, U(c) = ¢'7#/(1 — R) for some R > 0 different* from 1, W is a standard
Brownian motion, and p > 0. We shall assume that r, y and ¢ are all functions of
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some underlying Markov chain ¢ independent of W, with finite state-space J and
generator (). Thus

Ty = T(ft), e = M(ft), Ot = U(&t)-

Changes in the portfolio incur proportional transaction costs; to buy shares costing
1 we have to pay 1+ ¢ > 1 from the bank account, and selling shares worth 1 will
give us 1 —e < 1 in cash. Thus the dynamics of the amount x; in the bank account
at time ¢ and the value y; of the agent’s holding of shares at time ¢ will satisfy

dﬂ')t = ['f't.fCt - Ct]dt - (1 + J)th + (1 - €)st (12)
dy; = wydt + 0y dWy + dKy — dLy,

where K, denotes the cumulative amount moved into shares by time ¢, L, denotes
the cumulative amount moved out of shares by time ¢, and C; denotes the rate of
consumption at time ¢. If the underlying Markov chain & took only one value, then
the problem we consider would be exactly that of Davis & Norman (1990); they
exploit scaling properties to reduce the HJB equation to one dimension and find
that the proportion of wealth in the bank account

Ty

Py =
Tty

has to be kept within some interval I*, and the optimal buying and selling is the
minimum required to keep p in I*. The optimal processes K and L are continuous
and increasing, and singular with respect to Lebesgue measure, in the manner of a
local time.

In view of the Davis-Norman solution, we can expect that for each j € J there will
be some interval I7 such that while £ = j the optimally-controlled proportion will
have to be kept within I by similar local-time buying and selling. If this conjecture
turns out to be correct, then there will inevitably be jumps in the optimal K and
L, which happen when the state of £ changes from j to ¢ at an instant when the
proportion p is in I7 but not in /; an instantaneous jump to the nearest point of
I; will be made.

We are forced to look for a different method from that used by Davis & Norman,
because the shooting method they use to solve the one-dimensional HJB equation in
their problem will not generalise to the coupled system which arises in the problem
which we study here.

This problem is a generalization of the investment/consumption models of Merton
(1971), Davis & Norman (1990) and Zariphopoulou (1992). Our model allows for
the irregularity of paths as did Merton and Davis & Norman and also allows the
dynamics of the stock price process to vary as did Zariphopoulou so that “bull”
and “bear” markets can be accommodated, as can changes in the interest rate and
volatility.

An extensive survey of models with transaction costs is provided by Cadenillas
(2000). Our paper differs from the prior work in that we adopt a linear programming
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approach to the optimization problem in which the variables consist of measures on a
state and control product space. As such the linear program is infinite-dimensional.
The linear programming formulation for stochastic control problems has been es-
tablished by Bhatt and Borkar (1996) and Kurtz and Stockbridge (1998) for a wide
variety of optimality criteria. It has also been used to evaluate both controlled and
uncontrolled processes in many areas of application (see e.g. Helmes, Réhl and
Stockbridge (2001), Helmes and Stockbridge (2000), Mendiondo and Stockbridge
(1998) Haurie (2007), and Dempster and Hutton (1999). Similar linear programs
have been used for discrete time Markov decision processes (see e.g. Herndndez-
Lerma and Lasserre (1994). Numerical evaluation of the solution requires approxi-
mation by finite dimensional linear programs. We adopt a discretization approach
and approximate the diffusion process by a continuous-time Markov chain. This
approximation scheme has been well-studied (see e.g. Kushner and Dupuis (1992)).
Convergence of such approximate linear programs is established by Mendiondo and
Stockbridge (1998).

Here is a guide to the remainder of the paper. In Section 2, we show how scaling
properties can be used to reduce the apparently two-dimensional problem in terms
of (x,y) to a one-dimensional problem. We are in effect establishing a skew-product
decomposition of the bivariate process (x,y), akin to the well-known skew-product

this part of the paper is a relatively straightforward application of the methods of
stochastic calculus, with one little twist. Next in Section 3 we take the reduced
problem and approximate the process by a finite-state Markov chain. We then
explain in Section 4 how the problem is to be solved by the calculation of the
occupation measure, and how this reduces to a (large) linear program. This method
is illustrated by numerical examples in Section 5, where we see how well it performs.
Section 6 concludes the paper.

2 Reducing the problem.

The dynamics of the process (z,y),

d./L't = [T't.fCt — Ct]dt — (1 + 6)th + (1 — G)st (21)
dys = pydt + oy, dWy + dKy — dLy, (2.2)
are not totally unrestricted, otherwise we could take C' to be arbitrarily large and
the optimisation problem would be ill-posed. Following Davis & Norman (1990), we

make the natural restriction that at all times the process (z,¥:) should lie in the
solvency region

S={(z,y):z+(1—¢e)y>0,z+(1+0)y > 0}. (2.3)

The set S contains points for which y < 0, that is, where the agent is short the
share; but at such points z > —(1 + J)y, so the agent has at least enough in the
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bank account to buy the shares he is short. A similar interpretation holds for points
in § where z < 0.

Define the processes w; = z;+¥y; and p; = z;/(x; + ), together with the normalised
consumption process ¢; = Cy/wy, the normalised purchase rate dr; = w; 'dK, and
the normalised sale rate d\; = w; YdL,. Then a little It6 calculus gives us

dp, = —pi(1 —p)odW, + (1 —py) [(Tt — p)pr — ¢+ oppe(1 - pt)] dt

dwt = W (]. — pt)Utth + {(1 — pt)ﬂt + 7Py — Ct}dt — 5d/ﬁ)t — 5dA,{| s (25)

where dk, = w; 'dK;, dl; = w; 'dL,. The process w can thus be expressed explicitly

in terms of p as
t

wy/we = exp [Mt + / gsds — 0Ky — &\t}, (2.6)
0

where M, = fg(l - ps)a(fs)dWsa and g; = (1 - pt).u't + T — ¢ — %Ug(l - pt)Z- We
may therefore rewrite the payoff of the agent as

E[ /0 " e*PtU(ct)dt} - E[ /0 et R (IR i—tR]

oo t
= wy *E [/ exp{—pt + (1 — R)[M; + / gsds — 6ky — N} o B ——

(2.7)

Now we can reinterpret the term exp{(1 — R)M,} in terms of a change of measure.
Indeed, if we let

Zy = exp{(1 — R)M, — %/Ot(l — R)*(1 — p,)202ds},

then using Z as the change-of-measure martingale (which takes us from probability
P to probability P) converts the Brownian motion into a drifting Brownian motion

dW, = dW, + (1 — R)(1 — p,)o(&)dt
where W is a P-Brownian motion. Thus we can rewrite the objective (1.1) as

a8 ] [ ool [ oy €)ds (1B [ esds — (1~ R +eA) el L]
0 0 0

(2.8)
where

b &) = —p+ (1~ B)[(1 = pu(&) + r(€pe — S Ro(6) (1~ pe)’]



Under the transformed measure, the equation satisfied by p becomes

dpr = —p(1— pt)Utth + (1 =pe)|(re — pe)pe + RG?pt(l — )| dt

-1 —Apt)ctdt — (Pt 4+ 0(1 —pr))dks + (pe — (1 — pr))dAe
= X(ps, &)dWs + B(pe, &) dt — (1 — py)cidt
—(pe + (1 = pr)))dre + (pr — e(1 — pr))dAs, (2.9)

say. To summarise the situation: the dynamics of the problem are completely
represented by (2.9), which is the dynamics of a controlled one-dimensional diffusion,
controlled by the processes c, k and A, with drift and diffusion coefficients depending
on the state of the independent Markov chain &; and the payoff (2.8) is a functional
of the controlled diffusion, the controls, and the Markov chain.

3 Approximating the controlled diffusion.

The controlled diffusion process p takes values in [0,1], and we need to approximate it
by a Markov chain Z which will take values in the set X = {zg, z1,...,2x5} C [0, 1],
arranged in increasing order. To compute the jump intensities starting from some
state z;, (0 < i < N), we consider the diffusion p (respectively, the chain Z)
until the first time 7 (respectively, 7') when it reaches {z;_1,x;11}. We assume
that the control being used and the state of the underlying Markov chain £ remain
unaltered until this stopping time, and we further assume that the diffusion is well
approximated by a drifting Brownian motion

Y, =x; + vW; + at,

where the drift and the variance are given by the values at x; and the relevant control
and & values. Applying the Optional Stopping Theorem to the two martingales

M, = Y,—x;,—at
N, = M?—v*

at the stopping time 7, we have that

0 = E(Y;—z;—ar),
0 = E[(Y,—x;—ar)? —v?1],

so we pick the intensities with which Z jumps from z;, at rate A; up to z;4; and
rate p; down to z;_; so that the analogues of these two equalities hold:

0 = E(Zy—x;—at), (3.1)
0 = E[(Zy -z —at)? =27,



It is easy to work out that these two equalities imply the following relations for \;
and p;:

)\i M a
Z; —X;) + Ti—1 — Ty = 3.3
)\H',Uz'( o ) )\H‘Mz'( ' ) Ai + i (3:3)
A 2 2% 2 v?
—— (X1 — ;)" + Tii1 — X)) = 3.4
/\H‘Mi( i ) /\H‘Mz’( ' ) Ai + 1 (3.4)

These simultaneous linear equations are easily solved for A; and pu;; writing o =
Zir1 — x; and B = x; — x;,_1, we obtain

v? + Ba
v? — aa
T Bla+ By 0

These expressions may fail to be non-negative, but as « and [ get smaller, the
contribution in the numerators from the v? term eventually prevails. If one of (3.5)
or (3.6) is negative, it is because of a large value of a. We deal with this by replacing
the negative value by 0, and determining the other value from the equation (3.1).
The effect of this is to alter the solutions (3.5) and (3.6) to

_ v2+Ba a

Ai = maX{m,a,O} (37)
v —aa a

Wi = max{m,_—ﬁﬁ} (38)

Finally, we shall make the end points zy and x absorbing. This is in fact a harmless
assumption, since the optimal control will keep the process away from the endpoints.

The controls ¢, k, and A all take values in the interval [0, A], and this interval must
be discretised. We do this by allowing a finite mesh of ¢ values, and by supposing
that x and A take values in the set {0, A}.

To summarise the approximation, we build a Markov chain on the finite set X x J,
with jumps from state (x;, j) to (z;41,7) and (z;_1, j) at rates (dependent on (¢, k, A))
calculated as just described, and with jumps from (z;,j) to (z;, k) at rate gjy.

4 The occupation measure method.

To explain the main idea of our approach, we suppose that we have a controlled
finite-state Markov chain X, whose jump intensities depend on the current state,
and on the current value of the control u, which also takes values in a finite set. The
chain begins with law o, and the aim of the controller is to

max E”O/ exp(—Ay)g(ue, Xy)dt, (4.1)
0
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where .
Atz/ fus, X)ds.
0

ISSUES OF FINITENESS OF THE OBJECTIVE NEED TO BE DEALT WITH.
If we let u* denote the optimal control, and X* the optimally-controlled process, we
can define the occupation measure m* of the optimally-controlled process via

/ / o(u, 2)m* (du, dz) = B* / exp(— A o (ul, X7)dt,
0

where A} = fot f(uf, X¥)ds, and ¢ is any suitable test function. Knowledge of
the measure m* gives us full information on the solution, by taking the regular
conditional m*-distribution of u given x; what typically happens is that the optimal
control is simply a function of the underlying state, so from m* we can deduce what
that function is. More generally, the optimal control may be a ‘mixed’ control in
some (or all) states, and m* will again tell us what the optimal mixture will be in
such states. Thus we convert the (somewhat complicated) objective (4.1) into the
(much simpler linear) objective

//g(u, x)m(du, dzx), (4.2)

where now the measure m is to be the occupation measure for some controlled
version of X. The question is therefore, ‘How do we characterise such measures?’
The answer turns out to be remarkably simple. Suppose we pick some feedback
control ~, and let X7 denote the controlled process. For a test function v, we write
G"Y(z) = (Gy)(y(z),z) as alternative notations for the action of the controlled
generator on .

Next we consider the martingale
SO exp(=0 = [ (G = OGO, XD
Assuming the first term goes to zero in L', the optional sampling theorem gives
- [v@mlaa) = B [T e G0 - Fi)o(xD). XD)ds
[ [@e- o),z au, ds). (1.9

The point of this is that the occupation measures m in terms of which the objective
(4.2) is expressed can be characterised by the statement that for all (suitable) test
functions 1,

- [v@matdn) = [ 66~ fo)(u.2)m(du,do) (4.4)



Thus we have a linear programming problem: the problem has the linear objective
(4.2) (linear in the unknown m) constrained by the linear constraints (4.4). While
it may appear that the size of the problem is going to be unmanageable in any
real application (after all, the control will have to be discretised into finitely many
possible values, and then the number of variables is the number of states of X times
the number of discretised values of u, which is likely to get very big), it nevertheless
turns out that one can often do quite well.

5 Numerical examples.

6 Conclusions.



