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The volatility of stock prices has played an important tole in the financial literature.
Different methods of estimating the volatility are suggested and applied to British
financial assets. Since we cannot observe the real volatility, we investigate the effici-
ency of the methods through simulation. The question of which estimator to use
rather depends on the distributional assumption of returns. If it is log-normal,
methods based on high/low prices are preferred. Furthermore, if there is drift in the
data, then one may wish to use a procedure devised by Rogers and Satchell. If the drift

is varying with time, the Rogers and Satchell’s method is clearly superior.

I. INTRODUCTION

Since the recognition that the Black and Scholes option
price depends upon only one unobservable parameter, the
volatility of logarithmic stock prices, considerable attention
has been paid by financial economists to efficient volatility
estimation. Efficiency is of key importance, because of the
recognition that volatility may change over long periods of
time; a highly efficient procedure wilt allow researchers to
estimate volatility with a small number of observations.
Methods based on using opening, closing, high and low
prices, as published in the financial literature, have arisen in
response to this need, and readers should consult Parkinson
(1980), Garman and Klass (1980), and Rogers and Satchell
{1991} for details.

It is the purpose of this paper to describe a procedure put
forward by Rogers and Satcheill (1991), explain how to use it
with stock price data and assess its merits relative to existing
methods in the presence of discrete observations. A case of
some interest is when volatility is fitted over a long data
period during which expected returns are changing; pro-
vided the volatility remains constant, the Rogers and

Satchell method can estimate it even though the expected
return is non-constant. This is important because there is
some evidence of changing expected returns on the assets
over time; time-varying expected return is often attributed
to risk premia or trends in prices!. The relation between the
expected returns and the volatility can be also found in
French, Schwert and Stambaugh (1987). We investigate, via
simulation, how the different methods respond to various
parametric changes. We present a description of the
methods and some results in Section II and our simulation
results in Section III. Conclusions follow in Section IV.

1i. ESTIMATION OF VOLATILITY

We shall make the standard assumption in finance, namely
that s(¢), the price of the asset at time ¢, is generated by the
process of

ds(t) =as(t)dt + as(t)dW (D) 0

where o and ¢ are assumed constants for the moment, and
W(t) is a standard Brownian motion (BM). The use of .

!The changing expected return of stock prices is related to mean reversion in stock prices, which implies the presence of autocorrelation in
returns. See Poterba and Summers (1988), Fama and French (1988), Cecchetti, Lam and Mark (1990), Schwert and Seguin (1990).
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Equation 1 is based on the hypothesis that the continuous
" geometric Brownian motion is followed during periods be-
tween transactions and during periods of exchange closure,
even though prices cannot be observed in such intervals, It
is well known that Equation 1 has the solution

s(t)= S(O)exp[((x — é 02) t+o(Wit)— W(O))] 2)

and that in the logarithmic form,

s(5) 1
In{ ——|=[a—=g> W) — Wt—1). 3
n(s(t—l)) ( 50 )+a( O-We-1).  ©)
We see from Equation 3 that given In(s(r— 1)), In(s(z)) fol-
lows a random walk with drift and that errors are iid.

N(O,¢?), ie.,
Ins(t) =Ins{t — 1)+ (a —% az) +&(1)

where E@=a(W(H)—W(t—1)~N©O,03). @

Previous studies have considered the problem of estim-
ating o2 from daily data, specifically, the opening, closing,
high and low prices. In some cases, the daily volume of trade
or the number of transactions have also been used. How-
ever, in the latter case Equation 3 needs to be modified in
some way fo relate it to these variables, which is not our
concern in this paper. The models of the joint dynamics for
stock returns and volume are abundant in the recent finance
literature.

One of the major issues has been the extent to which the
behaviour of different estimators has been influenced by the
fact that the high/low prices are under/over-estimates of the
true high/low daily values; these are under/over-cstimates
because they are calculated from discretely observed sam-
ples, not the idealized continuous sample path for the day,
which is typically unobservable. Another issue is the pos-
sible behaviour of s(f) when the market is closed?; for simpli-
city, in this paper we assume that the process generating s(1}
stops when the market is closed and starts to work again
when it is open. However, Garman and Klass (1980) relax
this assumption in their paper.

First we define the notation for our method of estimating
volatility. Let h(f) and /{£} be the high and low prices from
day t. We shall divide h(t), /(z) and 5(z), the closing price, by
the opening price o(f) and define

H(t)=In(h(t)/o(2))
S(t)=In(s{z)/o(t))
L(t) =In(l()/o(1)). &)

This makes H(t), S(t) and L() independent across days, since
they are functions of non-overlapping increments of BM.
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We now assume that we have daily observations s(t),
t=1,2,...,n and o(t)=s(t— 1), then the naive estimator of
variance in a driftless world (¢=0) is just

1 H
63=— 3 (0" ©

t=1

A mean-adjusted unbiased alternative for the case when o is
not equal to zero is obviously :

1
(n—1)

1
n(n—1)

1= (tn(s(m) —In(s(O))*.

{Y S@y —
0

Garman and Klass (1980) derive an estimator that has
a minimum-variance among the class of unbiased es-
timators which are quadratic in H{t), S{t) and L(¢). This is
done under the assumption that a=0 in Equation 1. Their
practical estimator is the following

62x =0.511(H — L —0.019[S(H + L)— 2H L} —0.3838%
' ®)

Ball and Torous (1984) derive a maximum likelihood es-
timator (MLE) which will be asymptotically efficient. Since
it has no closed form solution and is again only relevant for
the case =0, we shall not examine it here, We note that an
MLE when « is not equal to zero will be extremetly complic-
ated. '

For the above and other reasons, Rogers and Satchell
(1991} suggest an estimator that has the attractive property
that it is unbiased whatever the value of « is; this is given by

62s=H(H—S)+ L(L-38). 9

Note that 6% is a member of the unbiased quadratic class of
Garman and Klass, so 8z will outperform it if «=0. How-
ever, as o increases, &2, goes badly astray, while 8% remains
close to the true value, see Rogers and Satchell {1991).
Having defined our basic estimators, we now address the
problem of how to adjust our estimators when the path can
only be monitored at discrete intervals. Since H(t) and L{t)
are not true values, it turns out that all our estimators,
except Equation 6 for =0 and Equation 7 for a#0, are
biased.

The reasons for the observed bias are that the observed
highs and lows from the market or simulation are less in
absolute magnitude than the highs and lows of the idealized
continuous process and that the time period over which it is
gstimated is shortened to the span of exchange trading
hours excluding closing hours, These technical limitations
produce a downward bias. Adjustments have been proposed
for the estimators which perform well in simulations. The
amount by which the random walk simulation under/over-
estimates the real price will depend on the fineness of the

2French and Roll (1986) proved that asset prices are much more volatile during exchange trading hours than during non-trading hours due
to the extent of the arrival of available information. This suggests that volatility is closely related to information processing.
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interval chosen; the more steps taken by a random waik in
the time interval, the better the approximation to the real
price we shall obtain. We shall denote by ¥ the number of
steps taken by the random walk during the time interval, the
proposed. estimator & ¢ of this adjustment is the positive
root of the equation

Tins=2b630s(/V)+ 2H~ L)aé 4 /IV  (10)
+H(H—8)+ I[{L—5)

—[1 J/2-1
=/2n!——
¢ ‘/”[4 6
3n
bs(l +z—)/12%0.2’797.

For a proof see Rogers and Satchell (1991), we note that
Equation 10 always has a solution3. Adjustment in the same
manner to Equation 10 for the Garman and Klass estimator
produces the estimator 62, where & i Solves

Gaex=0511((H—L)* + HH—1Yaé 15p \/W
+2856x(1/V) (b +a%)— 00195 (H+1)
+0.038(HL ~(H—L)ad y/1]V
—a*6ex(1/V)—0.38352 (11)

“The practical question arises as to how one would use
these formulae given daily data and the trading volume
and/or the number of transaction. Since volume is typically
available whilst the number of transactions is not, we can
us¢ the former as a proxy for the latter. This is clearly
unsatisfactory and Becker (1983) has attempted to estimate
2 variant of the Garman and Klass estimator using the
average number of daily transactions for the New York
Stock Exchange, but with no obvious gains as a conse-
quence. Since we obtained daily transactions data from the

- London Stock Exchange for five shares chosen from the
FT100 index for the period of 1 November 1989 to 11
October 1991, we will use the number of transactions as
a proxy for ¥ in our estimation,

The procedure we propose is as follows. Given our differ-
ent estimation procedures, Equations 6-11, which are based
on daily data, our procedure is to calculate our daily vari-
ance estimator 62, t=1, . . »h where { refers to the method,
ie. I=naive(0), mean-adjusted(1), GK, AGEK, RS, ARS. Our
estimators of volatility will be based on the following equa-
tion '

where

Jz0.4536,

H

6f=3 &2/m. (12)

t=1
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To give the reader some idea of the magnitudes involved
we estimate the variance of the daily logarithmic differences
of five British companies for which we have transactions
data. The companies are ASDA Group, British Telecommuy-
nication, Grand Metropolitan, ICT and Thorn-EM1. We
present in Table 1 the values of the estimators 63, 62k, ek
8k 8 4rs; We do not report &1 since it is virtually identical to
&5. The data period is chosen from | November 1989 to 11
October 1991 due to the availability of transactions data,

Table 1 shows the difference among the estimates from
the different methods even though the magnitude is quite
small. The naive estimator is typically between 20% and
100% larger than the extreme-vajue estimators in columns
3 to 6, this is true in all cases, and is a phenomenon that
requires explanation. In fact to strengthen this point, we
note that the four high/low estimators are very similar in
value, each lies in the other’s 95% confidence interval in
most cases. The naive estimator does not lie in the confi-
dence intervals of any of the high/low estimators with the
exception of ICL. Note that the adjusted estimators are
always larger than the unadjusted; this follows from their
definition. This indicates the substantial effect of transac-
tions on the volatility. In general, most estimators are signi-
ficantly correlated with the number of transactions even if
not reported here. The only exception to this is British
Telecommunication. It may be that the privatization of
1984, which led to a very broad ownership of BT, would
bave influenced the transactions costs for BT. These higher
costs would mean less portfolio changes (transactions) to
price changes (volatility), hence the non-significant correla-
tion between the two.

Table 1. Estimation of Volatility (1 November 1989-11 October
1991

&g &é}( &flGK &IZZS &iRS
ASDA 7146 3681 4063 355 3887
(2154)  (0.628)  (0.660) (0.604)  (0.629)
BT 1447 0871 0933 0831  0.s88
(0105 ©0.047)  ©050) (0051) (0054
GMET 1714 1070 1185 1070 1178
0129 ©125  ©136) (©177) (0189
ICT 1268 1059 1141 1132 la2py
(0125 (0.09)  ©.164) (125 (0132
THN 1421 0704 0861 0654 0795
(01200 (0.047)  ©055 (0.049) (0.056)

*The first number is calculated by Equation 12 and the number in
parenthesis is its standard deviation. The number of observations
used is 492. All numbers are sealed up by 10E 14,

*Tt is easy to show that the Equation 10 has real solutions, and hence one positive solution. Define

Q(0)=(1—2b/%) 6> —2H — Lyag, / 17V — H(H—8)—L{L.—S§)

Then, for V> 2b, Q(a)— o as tel— o0 and Q(0)<0, This guaraniees one positive root.
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If we knew the explicit relationship between our es-
timators of ¢ and V, we could introduce appropriate
weights in Equation 12. But we do not assume here that
daily volatility of stock price conditional on the number of
transactions is a linear function of the number of transac-
tions. Rather we assume that daily volatility is constant
given the sample period by the definition of Hquation 1, and
that we only observe a finite number of price changes a day,
whenever there is a transaction. If our assumption is true,
we might expect a positive correlation between the extreme-
value estimatots and the nomber of transactions but not
between &2 and the number of transactions. However, the
significant correlations suggest that (Ins(f)—ins(t— 1)) is
positively correlated with the number of transactions, Thus
the distributional assumptions in Equations 1 to 4 are not
correct. The distribution of s(t) conditional on ¥ may be
normal and there is a huge literature on this topic; we have
already noted its importance earhier and we shall not pursue
such a possibility in this paper.

Another potential candidate for the measurement of vola-
tility is the implicit volatility. Even though we have no idea
about the real volatility, in practice implicit volatility de-
duced from the Black and Scholes option pricing model is
widely used. The remarkable feature of the Black and
Scholes option formula is that it is unaffected by changes in
the « function in Equation 1 of s(¢) for a fixed rate of interest,
see Merton (1980), hence an implicit volatility estimator
deduced from the options price may be useful for this model.
However, the fact that the implicit volatility takes different

values for different exercise prices and maturities makes it

unreliable as a benchmark, What is clear from the empirical
data is the large vasiation in volatility estimators across
methods, and the significant correlation between high/low
estimators and the number of transactions. These findings
motivate a simulated experiment to try to understand these
problems more deeply.

111. SIMULATION

In this section we present a gencralization mentioned earlier
in that we allow the drift (x) to vary from one day to the
next, independently of the random walk. The drift may have
a certain time-varying structure. The estimator 8% given by
Equation 12 remains unbiased in the presence of changing
drift (z) of the form described above. The adjusted estimator
&2gs cannot be expected to be exactly unbiased so that
changing drift may weaken its performance, a question we
investigate below, We now give details of our simulation
experiment. We assume our data are generated by Equation
1. We choose «=0.00068* and ¢=0.013 based on the aver-
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age value of our empirical data during the estimation
period, here we normalize o= 1.0 and a=0.052 for the sake
of simplicity. For each day given the number of transactions
v, we generate V; random normals with distribution,
N((a— 62/2)/ V6% V). From these we obtain prices. We set
n=30, for these 30 days we calculate our various estimators.
Perhaps the different values of n can be used for longer
periods to investigate the efficiency over the estimation
period. We shall denote 2 typical one by &7;°, where [is the
estimator type and j refers to the simulation numbers. Then
we repeat 1000 simulations so that we have {87},
j=1,...,1000. As a preliminary test, we carried out the
simple Monte Carlo simulation with a constant drift and
a fixed number of transactions. Even though we do not
report the results here, we find that with a small number of
transactions the naive estimators perform better than the
others. However, as we increase the number of transact1lons,
the other four estimatots are becoming mote accurate. We
also observe that the naive estimators are more volatile, and
the high/low estimators lead to substantial gains in effici-
ency as is well known. As V increases, the bias in the
high/low estimators is reduced, hence they are getting lar-
ger, explaining the positive correlation with 7. One interest-
ing finding is that the GK and AGK estimators are margin-
ally better than the RS and ARS estimators, respectively for
high V.

Now we carry out our experiment by letting o vary from
day to day. The drift is generated by a sample from a normal
distribution with mean equal to 0.052 and variance a2, and
calculate (once for each value of a2) a sequence of n values of
«, The choice of a normal distribution is arbitrary. One
generalization wouid be to introduce some autoregressive
process to reflect the mean reversion in stock prices. We let
¢2=0,1%,2%,3% 1though our choices of ¢} are too large to
be considered ‘realistic’ we have purposely chosen them to
highlight the different impacts of changing expected returns
on our various estimators. This preserves the average value
of drift whilst steadily increasing its volatility. Besides
a time-changing drift, we simulated a time series with
stochastic transactions, this is more reatistic and applicable
to economic data. Based on the empirical, the number of
transactions is assumed to be uniformly distributed with
mean 307 and standard deviation 228. Again the uniform
distribution is chosen for the convenience. However, those
numbers generated by the uniform distribution are quite
arbitrary and may not reflect the actual number of daily
transactions, All procedures should improve with increased
time (1) but the assumption of fixed volatility becomes
harder to maintain. There is ample evidence of hetero-
scedasticity of stock returns in the literature. Our choice of
parameters is broadly consistent with the empirical data,

+We have the historical average equal to 0.0006 for the five companies, which is (2 —o2/2) from Equation 4. Therefore, a is set equal to
0.00068. The rescaling approximately preserves the finite sample distribution in the sense that the simulated data is proportional to
a normal distribution whose mean and variance are equal to those of the empirical data.

5There is a slight change in the meaning of the notation between here and the definition above in Equation 12.
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Table 2. MSE x 10° from the Simulations with El@)=0.052 and 6=1.0

245

o o 81 Gk ok brs %rs
052 128.118 65.188 16344 10.548 23360  12.657
0.089 0.065 0.008 0010 0.010 0.012
N(.052,1) 148287 1297.30 10.959 20416  28.010  14.635
0.207 0.204 0.010 0.013 0.011 0.013
N(.052,4) 175514 18288.9 124,23 27470 38662 17612
0.589 0.623 0.016 0.021 0.013 0.016
N(052,9) 85255.8 90927.8 757573 131647 52980  20.095
1.234 1.319 0.024 0032 0014 0.018

*The second number indicates the variance of the estimator, var(0)=E[§*]—

(E[01])?, the first number is the MSE times 1000.

see 4. We note that «=0.00068 and ¢=0.013 corresponds to
an annual expected return of 17% given our assumption
that the same process governs the market when it is closed
or open. This corresponds to the value over our data period
(1 May 1990 to 11 October 1991} but may be thought to be
too high.

Our random numbers are generated by a random walk
with a Gaussian step distribution. If ¥ is the number of steps
taken by the random walk in day ¢, then each step has mean
(%, —a?/2)/V and variance ¢*/¥. In this way we preserve the
mean and variance of the daily distribution whilst gradually
‘smoothing’ its daily sample path. For large V' we would
expect the data to be virtually ‘Brownian’. These gencrate
the values of s{1), h(t) and I{t). This is done once for each
simulation and the different methods are applied to these
data. Thus we get 1000 values of each estimators. From this
sample we calculate (X 4;;)/1000 and (Z 47;)/1000. These two
statistics are used to calculate the sample bias in variance
and sample mean squared error (MSE) of the estimators.
The results are presented in Table 2. The accuracy of our
simulations can be ganged by the use of analytic results for
the case of 63 and &7 since we know their distributions. For
our choice of parameters, the variance of 62 for the case of
constant drift will be 0.093 and for 6%, 0.066°.

®In the case of a constant drift and o(t)=s(r—1),

1
fi=—
n[

Turning to the MSE calculations in Table 2, we see that:

(i) The naive estimator, 7 and mean-adjusted es-
timator, 67, become less accurate as the volatility of drift
increases; in particular, the bias becomes very large in-
deed. The values from the simulation are broadly in line
with their true values, see 6.

(il) We already noted in the early discussion that both
the Garman and Klass and the adjusted Garman and
Klass estimators perform very well for fixed and less
volatile . This suggests for the levels of less volatile
expected return that one might have in practice the Gar-
man and Klass estimator should be preferred.

(iif) As the volatility of « is increased, generally, for all
cstimators, bias becomes large, the only exception is the
Garman and Klass estimator where the bias is reduced
when o,=1. This is because the Garman and Kiass es-
timator is based_on the assumption of «=0 and the
distribution N{0.052, 1} can produce relatively small num-
bers. For highly volatile %, the adjusted Rogers and
Satchell estimator outperforms the others significantly,

(iv} Adjustment procedures seem worthwhile. Unad-
justed estimators seem to retain large bias. These are of
the order of 100% for #%s. In the same case, the adjusted

5 [S@1= 3. [InGs(0) ~InGo(c— D)7’

=% i [{e—a?/2)+a&()]?

2

=(o¢—0'2/2)2+%(0t—02/2)a' i é”(t)+% > &)

E[53]=(a—a?/2)? + 02,

Var(d3) =

Ho—a?/2)Pa? 420

"

t=1 1=F

In our simulation, n=30, x=0.052, and ¢=1.0. Then the true variance of the estimator is 0.093. Similarly, since 67 is distributed as
233 m)fn, E(@})=a? and Var{6})=26%/n, the variance of this estimator for the chosen values is equal to 0.066.
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estimators have a bias to variance rate of about 20%, The
adjusted Rogers and Satchell always outperforms the unad-
justed but the same is true for the Garman and Klass
estimators only in the constant drift case.

Some broad recormmendations follow. If drift is constant,
the adjusted Garman and Klass estimator seems to be
preferred on the grounds of both bias and efficiency (small
variance). As we allow the drift to vary, the picture changes,
Naive estimators and Garman and Klass estimators per-
form badly although the adjusted Rogers and Satchell stili
has a reasonably small variance. In this simulation the
adjusted Rogers and Satchell estimator outperforms all the
others as from our earlier discussion.

IV. CONCLUSION

In this paper, we explained how to estimate volatility using
different methods of incorporating high/low data. We con-
sidered two possibic complications, namely changes in the
expected return and the observations of a continuous pro-
cess at discrete points in time. Both these problems may bias
our estimators. Qur simulation study suggesis that the pro-
cedures advocated by the authors, given in Equations 9 and
10 of the paper, seem to be the best compromise and
certainly outperform the other alternatives for the experi-
ments chosen.

We address some limitations. Since each stock is isolated,
we ignore the covariation thought to exist among stocks in
various asset pricing models. Although this should not
influence efficient estimation of volatility under our assump-
tions, onc might envisage that there may be valuable in-
formation about o2 for some possible joint distributions.
Dividends and other discrete capital payouts are neglected
in our data, since these may violate the continuous nature of
the assumed diffusion sample paths. As pointed out several
times, there is a strong doubt whether the hypothesis of
a diffusion process is the correct model of asset price fluctu-
ations. Different assumptions from Equation 1 will dramati-
cally change the properties of high/low, in particular, the
estimators given by Equations 8 to 11 will be incorrect or
need further adjustment. Also, in practice, bias may arise
from the following sources; to the extent that transactions
themselves may convey new information, daytime volatil-
ities may be different from night-time volatilities; bid-ask
spreads exist, within which the transactions process may be
quite complicated; and volatilities may otherwise be non-
stationary in a variety of fashions. Asset prices are much
more volatile during exchange trading hours than during
non-trading hours although our transactions based models
may be able to take this into account. Also, if we assume the
stock-specific relationships, using the cross-sectional differ-
ences in the relationship, we can obtain a better estimator
since the informational content of the high/low data varies
across stocks.
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1t is well known that the variance of aggregate stock
returns changes over time. The presence of heteroscedastic-
ity prevents us from estimating the variance over a long-
time period. If the volatility of stock returns is not constant,
recent data are preferred to predict the future volatility and
by sampling the return process more frequently, we can
increase the accuracy of the standard deviation estimate.
Characterizations of the heteroscedasticity of stock returns
are required for the study of distributional properties of
stock returns and time-varying expected returns or mean
reversion in stock returns.

The importance of high relative efficiency is obvious, in as
much as prediction with improved confidence intervals may
be constructed from our data bases. Consequently, invest-
igators may adopt the tactic of purposely restricting data
usage to combat unforeseen non-stationarities, If so, the
procedures that we advocate give high efficiency without

- using too long a time series and seem able to cope with

certain types of non-stationarity, Applied researchers
should base their choice of estimation procedure by consid-
ering the validity of the various assumptions that we have
made. The simplicity of the naive estimators and their ro-
bust distribution-free properties explain their persistence in
the statistical literature. However, the simplified high/low
estimators by Rogers and Satchell seem to perform well for
changing drift and reasonable levels of market activity
based on only 30 daily observations.
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