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1 Introduction

Finding the expectation (or the law) of a functional of a Brownian path is usually either
quite straightforward, or quite impossible1, and it is usually not too hard to guess into
which category a particular question falls. However, the question which we deal with in
this short note is innocent to state, surprisingly tricky to deal with, and falls somewhere
between the two types of problem. The question arose naturally in an application to
the estimation of the correlation between two stocks (see (Rogers and Zhou, 2006) for
a full account), and can be simply stated as follows. Let (Wi(t))t≥0, i = 1, 2, be two
standard Brownian motions with constant correlation ρ:

E[W1(s)W2(t)] = ρ min{s, t} ∀s, t ≥ 0

and let Si(t) ≡ sups≤t Wi(s); what is

E[ S1(t)S2(t) ] ? (1)

1(Borodin and Salminen, 2002) is an encyclopedia of results of the first kind.

1



Brownian scaling tells us that there must be some positive function c : [−1, 1] → (0,∞)
such that

E[ S1(t)S2(t) ] = c(ρ)t,

so all we have to do is to find c. The values c(1) = 1, c(0) = 2/π = 0.6366198, and
c(−1) = 2 log(2) − 1 = 0.3862994 are known (for the last, see, for example, (Garman
and Klass, 1980)); they reduce to calculations for a single Brownian motion. The three
values are not of course collinear, so the functional form of c is not obviously trivial, but
the departure from collinearity is not great:

1

2
{ c(−1) + c(1) } − c(0) = 0.0565274.

In this note, we shall derive the explicit form

c(ρ) = cos α

∫ ∞

0

dν
cosh να

sinh νπ/2
tanh νγ (2)

for the function c, where ρ = sin α, α ∈ (−π/2, π/2), and 2γ = α + π/2.

2 Calculating c.

We begin with some notation. We write

G ≡ 1

2

{
D2

1 + 2ρD1D2 + D2
2

}
for the infinitesimal generator of W , where Di ≡ ∂/∂xi. We shall write

Xi(t) ≡ Si(t)−Wi(t), i = 1, 2,

for the process of the heights below the maxima, which is a correlated two-dimensional
Brownian motion in R2

+ with normal reflection on the axes. We shall write T for an

exponential(λ) variable independent of W , and we set θ ≡
√

2λ.

We break the calculation into a sequence of goals, each a consequence of the next, until
we finally arrive at a goal we can attain.

Goal 1: Calculate

f(x1, x2) ≡ P
[
x1 ≤ S1(T ), x2 ≤ S2(T )

]
=

∫ ∞

0

λe−λtP [x1 ≤ S1(t), x2 ≤ S2(t)]dt.
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This is as good as solving the problem, because then we shall obtain

λ−1c(ρ) =

∫ ∞

0

∫ ∞

0

f(x1, x2) dx1 dx2.

To achieve Goal 1, we aim for:

Goal 2: Calculate

f̃(x1, x2) ≡ P
[
S1(T ) ≤ x1, S2(T ) ≤ x2

]
= P [ τ > T | X1(0) = x1, X2(0) = x2 ],

where τ = inf{t : X1(t)X2(t) = 0}. This will give us Goal 1, because

1− f(x1, x2) = P [S1(T ) ≤ x1] + P [S2(T ) ≤ x2]− f̃(x1, x2)

= 1− e−θx1 + 1− e−θx2 − f̃(x1, x2). (3)

Now

f̂ ≡ 1− f̃(x1, x2) = P [ τ < T | X1(0) = x1, X2(0) = x2 ]

= E[ e−λτ | X1(0) = x1, X2(0) = x2 ]

will clearly satisfy
(λ− G)f̂ = 0

with boundary conditions f̂ = 1 on the axes. Using this, we see from (3) that

f(x1, x2) = e−θx1 + e−θx2 − f̂(x1, x2)

must solve
(λ− G)f = 0 (4)

with boundary conditions

f(x1, 0) = e−θx1 , (5)

f(0, x2) = e−θx2 . (6)

Our next goal therefore is:

Goal 3: Solve the PDE (4), (5), (6). For this, we transform the state variables:

Xt ≡ X1(t) sec α−X2(t) tan α, Yt = X2(t),

where ρ = sin α. As is easily confirmed, the process Zt ≡ Xt + iYt is now a complex
Brownian motion in the wedge

Ωρ ≡ {reiϕ : r ≥ 0, 0 ≤ ϕ ≤ 2γ},
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where we write
2γ = α +

π

2
.

The Brownian motion Z experiences skew reflection on the boundary of Ωρ, in the
direction (− sin α, cos α) on R+ and in direction (1, 0) on the other side of the wedge.

Remark. Brownian motion in the wedge with skew reflection was studied by (Varadhan
and Williams, 1985), who gave criteria for the corner of the wedge to be visited, and for
there to be possible escape from the corner; see also (Rogers, 1989) for a brisk summary
of the results. The criterion of Varadhan & Williams leads to the (initially surprising)
conclusion that if ρ > 0 then the corner of the wedge will be visited; in terms of W , this
says that there will be times t such that

W1(t) = S1(t) and W2(t) = S2(t),

a property that would certainly not be satisfied if the Brownian motions were indepen-
dent.

Writing h(x + iy) = f(x1, x2), we therefore have that h satisfies the PDE

(λ− 1

2
∆)h = 0

with the boundary condition that

h(reiϕ) = exp(−θr cos α) (7)

for ϕ = 0, 2γ. Writing the Laplacian in polar coordinates, we obtain the PDE for h:

(θ2 −Drr −
1

r
Dr −

1

r2
Dϕϕ)h = 0 (8)

where (for example) Drr ≡ ∂2/∂r2. Now the PDE (8) has separable solutions of the
form

hν(re
iϕ) = Kiν(θr) cosh(ν(ϕ− γ))

for ν > 0, in terms of the usual Bessel functions Kβ, and the key is to combine these
using Kantorovich-Lebedev transforms, a technique we learned from Henry McKean.
We claim that the integral combination

h(reiϕ) =
2

π

∫ ∞

0

cosh(να)
cosh ν(ϕ− γ)

cosh νγ
Kiν(θr) dν (9)

is the solution to the PDE (8) with the required boundary conditions (7). The fact that
this solves the PDE follows from that fact that it is a linear combination of separable
solutions, and to confirm the boundary behaviour, we quote the identity

2

π

∫ ∞

0

Kiν(r) cosh να dν = exp(−r cos α) (10)
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for 0 ≤ α ≤ π/2; see (Oberhettinger, 1972) page 244.

The expression (9) achieves Goal 3, hence Goal 2 and finally Goal 1. To obtain the
constant c(ρ) we just have to integrate the solution h over the domain Ωρ, not forgetting
the (constant) Jacobian: we find that

λ−1c(ρ) = cos α

∫ ∞

0

r dr

∫ 2γ

0

dϕ

∫ ∞

0

dν
2

π
cosh(να)

cosh ν(ϕ− γ)

cosh νγ
Kiν(θr)

=
cos α

θ2

∫ 2γ

0

dϕ

∫ ∞

0

dν
cosh να

sinh νπ/2

cosh ν(ϕ− γ)

cosh νγ

=
cos α

θ2

∫ ∞

0

dν
cosh να

sinh νπ/2
2 tanh νγ.

Finally, we have explicitly

c(ρ) = cos α

∫ ∞

0

dν
cosh να

sinh νπ/2
tanh νγ,

as stated at (2).
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