
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

L. C. G. ROGERS

DAVID WILLIAMS
Time-substitution based on fluctuating additive functionals
(Wiener-Hopf factorization for infinitesimal generators)
Séminaire de probabilités (Strasbourg), tome 14 (1980), p. 332-342
<http://www.numdam.org/item?id=SPS_1980__14__332_0>

© Springer-Verlag, Berlin Heidelberg New York, 1980, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1980__14__332_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


TIME-SUBSTITUTION BASED ON FLUCTUATING ADDITIVE FUNCTIONALS

(WIENER-HOPF FACTORIZATION FOR INFINITESIMAL GENERATORS)

by

L.C.G. Rogers and David Williams

1. This note is merely a first indication of how some of the ideas in the

preceding paper [2] by Barlow, Rogers, and Williams (hereafter denoted by [BRW]),
extend to Markov processes with ’continuous’ state-spaceo We hope to publish a

more detailed study soono Unusual and interesting purely-analytic problems are

posed by the work. However, our main purpose is to attempt to understand what

is going on in the probabilistic aspects of the subjecto

Our problem has considerable practical importance (but we can make no such

claims for the results presented here I) Pure-mathematical technicalities are

therefore avoidedo 0 We remark however that this work (though not today’s

examples) forces us to acknowledge the practical usefulness of branch-points,

incursions, and other ’exotica’ of the general theoryo Vivent les hypotheses

droites: ’

Here, we try to convey just a whiff of the flavour of things via two concrete

exampleso 0 But, for the deepest concrete work done, and on a problem which is

important, see McKean [5 ~.

Noteo We are aware that many of the results in the present paper may be

obtained via the classical Wiener-Hopf methods described for example in

Bingham [ 3 ]. That our methods are (in principlel) of much wider applicability

is of course evident from [BRW].

Acknowledgement. 0 ~e thank Professor Kingman for proving our conjecture

that (405) ===> (407), and for allowing us to publish his fine proofo
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20 Let X be a nice Markov process with state-space E. Let ~R. ~ be the

resolvent of X, defined as usual, but now for all complex A with > 0,

by

(Here, f is a bounded comple x-valued function on E. The symbol ’*’

signifies ’is defined to equal’)o We use Q to denote the ’natural’ infinitesimal

.generator of X defined as follows. If g is a bounded (complex-valued)

function on E, write g E D(Q) and Qg = f is f is a bounded function on E

such that for some (then every) X with ~~A~ > 0,

g = f~ e

Notes.

(a) Q extends the classical strong generator of Hille-Yosida theory.

Meyer uses a similar (but not identical) form of generator in [6 ~, 0

(b) For g E D(Q), f = Qg is defined only ’modulo a set of potential zero’.

Two ’versions9 fl and f2 of f satisfy

1, Vx. Q

Let (p be a fluctuating perfect continuous additive functional of X;

by this, , we mean: .

(i) t ~ (p is continuous,

(ii) (p is ~3t~ adapted,

+  t ° s ~ , Vs, dt. 0

The case when

(2.1) 03C6t = to V(Xs)ds
for some function V:E - 1R is the most important 0 However, cases in which (p
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involves local times, and cases where cp is not of finite variation, are also

of interest. For t >_ 0, set

= > 

A standard argument based on the strong Markov property of X shows that

where X~~t~, is a (strong) Markov process. 0 For c Z 0, we wish

to calculate the transition function , where
c

+c(t)f(x) ~ x[exp(-c03C4+t)f  X(03C4+t)],
or, equivalently, the resolvent or °natural’ generator of

c

~P ~+ ~t~~. When c = 0, we suppress c from the notation; but note that
c

== i+  

Amongst interesting probabilistic problems posed by this work is the following:

~+
what form of killing of X is induced by killing X at rate c ?

3. Let 03C6 be of the form (2.1), and suppose that E+ is closed, where

E+ ‘ ~x E E : : 0~. By right-continuity of paths, lives in E+.

Suppose first that c > 0, and regard c as fixed, Keep [BRW] in mind,

an d hope for the besto So, write g E if and

(3.1) Qg = Vg + cg

for some complex number ~ _ with  0. Then, 

is a martingale (right-continuous under the right hypotheses) which is bounded

on [O,03C4+u] for every u - > 0. Apply the optional-sampling theorem at time

to obtain

~3.2~ ) e  t g + on E+, where g+

denotes the restriction of g to E+, Note that the fact that c > 0 takes

+
care of difficulties associated with the possibility that ~t - oo.
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Let N+ 1,c _ {g+ : g E We say that N+1,c is ’- full on E+ if

whenever v is a complex-valued measure of finite total variation on E+,

0 E _> v = Oo

~3.3~ OBVIOUS LEMMA. ° Let c > 00 Suppose that is full on E+.

Then {+c(.)} ) is uniquely determined by (3.2). Moreover, {+c(.)} is the

unique subMarkovian resolvent on E+ such that

~g+ ~ N+1,c, 203BB+c(03BB)g+ = g+ where 03BB = - (g).

4. Example, 0 Suppose that X is Brownian motion on IR, and that

~4.1~ 1 (x > 0~; 0 (x = 0~; -K (x C 0~;

where K > 0. Then equation (301) takes the form:

~4.2~ g = ~~,+c~g+ Vg~’

Now it is well known that for > 0,

> 0.

It is now easy to show that to obtain a bounded solution g of ~4.2~ we must

choose ~ real with ~ > c, and that we then have (with the normalisation

g(O) = 1~ g = g , where

,

g ~x~ ~ cos~~2~.-2c~2x~ + 2 
2 

sin ~x Z 0~;gc,03BB(x) ~ cos[(203BB-2c)1 2x] + (203BB-2c)1 2 sin [(203BB-2c)1 2x] (x ~ 0);

~ exp[(xk03BB+2c)1 2x] (x  O).

Thus,

- 
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i

Let to obtain for x > 0, and with y ~ (203BB)1 2 > 0,

(4.3) Ex[cos03B3+t + K1 2 sin 03B3+t; i+  ~] = x + K2 sin 

Now let to obtain
vv

 = 1, Vto

. Assume for the moment that

~4,4~ the functions ~g+ : : y > 0~ on where

g+03B3(x) ~ cosyx + sin y x, , x E p

are full on .

Then the transition function {p+(.) j is uniquely determined by the fact that

its resolvent ) satisfies:

~ 2~,R+~~.~g+ - ~~ = iY ~. 0

Let us make an intelligent guess about {R (o)}o be the Markov

process on which behaves like Brownian motion away from 0, never

0 continuously’, and jumps from 0 according to the Lévy measure

(4.5) J~dx~ - constant 0 x 0 ~c a  1, tan ~~ta= K _ 2,
Let {oR+(e)} be the resolvent of Brownian motion on killed at 00

Then the resolvent {û’+( .)} of Y is given by

’ 

* + 

where h+ denotes an arbitrary bounded function on (0,~~, and, as always,

y = ~2~,~~, o It is easily checked that

~4.6~ 0 R+~~.~g+~x~ - ~2~~ x + K2 sin yx - e ~x~,

1(1 _ e 

The essential fact is that for J as at (405),

(4.7) (o,~)(cos03B3x + K1 2sin03B3x - 1) J(dx) = 0, 
’ 

~03B3 > 0.
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This is known in the theory of stable processes, and is intuitively obvious

because

J(o,oo) f (1 - = ~ 1 - 
so that

~ 1 - 

and hence

J(o,oo) f 
See page 168 of Gnedenko and Kolmogorov [4] for more rigouro

Putting the pieces together, we find that

Vy > 0, 203BB+(03BB)g+03B3 = g+03B3.
Hence, X 

+ 
has the same transition function as Y ±

5. Kingman’s proof that ~4.7~ _> ~4,5~. As things have turned out, the

fact that (407) ===> (4.5) follows from our probabilistic method - see ~6.

However, Kingman’s proof of this fact is one of the few sensible pieces of

analysis in this area at the moment - contrast §61 - and it may well point to

better things.

Suppose that (407) holds for some non-negative measure J on 

For complex y with ~~~’~ Z 0, define

f(Y) = 
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Then f is analytic in fd(y) > 0~, and continuous on 4~.

Moreover, 0 (with equality at y = 0 and perhaps at multiples

of a purely real 6~o Now, f is real and positive on the upper imaginary

axis ~~~~~ = 0, 5(y) > 0~; and, since (4.7) holds, (1 - K2i)f is

imaginary on the right half ~,~~y~~ > 0, 5(y) = 0~ of the real axis. Hence,

in the first quadrant the harmonic function cp, where

~P~Y~ _ argf(y) = (logf(y)),

stays bounded between and tn, and has boundary values as shown in

Figure 1.

cp = 0 
.

cp 

’ 

Figure 1

Hence, = 03B1arg (-i03B3). Thus logf(03B3) is determined up to an additive

constant, and

f(y) = constant.(-iy) . 
’

In particular, for real 8 > 0,

(-6x 6a , 
.

and so J is determined. 0
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60 Proof of 404 o One of the main difficulties which we have encountered

in this work is that of proving that various classes of functions are fullo

We have so far failed to adapt Kingman’s method to prove (404) ; and we

do need ~404) to show that X cannot exit 0 continuouslyo Note that

since ~4,4) implies that X + and Y have the same transition function, it

follows that (404) implies Kingman’s result that ~407) => (405)o However,

Kingman’s method of proof proves to be useful in the study of analogues of (407)0

We now prove (404) by a bizarre probabilistic methodo We know from (403)

that

j P+ ~t x + K~ sin ~yx) - J

so that

( 601) + 

Suppose now that v is a signed (or, more generally, complex-valued) measure on

(0,00) of finite total variation such that

(602) (cosyx + K1 2 sin 03B3 x)v(dx) =0, Vy > 00

Integrate (6.2) with respect to the measure over y E to obtain

(O,~)exp(-1 2tx2)03BD(dx) = O, ~t > O.

Hence (on putting t = s 1 and multiplying by (27Cs ) ~),

~ 2~ts3) ~ ~ = Oo

Multiply by where 8 > 0, and integrate over s in to obtain

(O,~)e-03B8x03BD(dx) = O, ~03B8 > O.

Hence v = Oo You can easily ch eck that the various appeals to Fubini’s theorem

are justified.
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7. Now, of course, there is much more to study in connection with the above

example. In particular, the question mentioned earlier about how killing X

at rate c induces a killing of X +, , is rather interesting. It is clear that

X 
+ 

is killed according to a discontinuous multiplicative functional which takes

into account the jumps of X + from 0. But we are not going to become

involved with the analytic complexities of that problem now.

Instead, we end with an example of a very different type.

80 Example. Let § t > 0 ~ be a Brownian motion on , starting at

0, with drift ~ > 0, so that the law of {B - t ; ; t ~ 0~ is Wiener measure.

Define : :

Vt = Mt - 2Mt - Bt - Vt + Mt ’ ’

~ = inf ~ s ; ~ V~~t~ , ’
Now V is a time-homogeneous strong Markov process, and M is local time

at 0 for V. Thus cp is a fluctuating continuous additive functional for V.

Obviously,  oo] = 1.

The results of Rogers an d Pitman [7 ] make it plain that the transition

semigroup of V+ is given by the following formulae:

(8.10i) +t (O,dy) = 2  e-2 y (1 - e-2 t )-1 dy on [O,t],

and, for x > 0,

(8.1.ii) +t(x,{x+t}) = e-2 t(1 - e-2 x)(1 - e-2 (x+t))-1 ,

(8.1.iii) +t(x,dy) = 2 e-2 y(1 - e-2 t)(1 - e-2 (x+t))-2 dy on [O,x+t),

(8.1.iv) +t(x,(x+t,~)) = 0. .

Here is a martingale proof in the spirit of the remainder of this paper.

Begin by observing that for 6 Z 0,
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~g,2~ is a martingale,

where

8e~~ ’e~x _ ~2~ + .

Indeed,

6e~2~, + 8~M - 2~B _C ~ + ,

so that

+ 

- 2~6 e~2~ +6~M - 2~BC~ _ 
But whenever M increases, M = B, so that

(e2~~M _ B) 0 . .

This observation was used by Azema and Yor (1 ~ ] to find similar families of

martingales of Brownian motion. ° Now (8.2) follows, since E L1

for each t Z 0. By the fact that, for u > 0, V and cp are bounded on

we deduce from the optional sampling theorem that

(8.3) +t g03B8(x) = e-03B8t g03B8(x).

We need only prove now that

~g,4~ ; 9 Z 0~ is full on every interval of the form (O,K~, and that

~8.3~ holds if ) is defined by ~8.1~, These parts are left as exercises

for the reader.

We can get results for  = 0 by letting ||0, to obtain
vv

+t (O,dy) = t-1 dy on [O,t[ ,

+t(x,{x + t}) = x x+t ,

~x,dy~ - on (0, , x + t~.

This is a strikingly simple semigroup!
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