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Abstract. The use of saddle-point approximations in statistics is a well-
established technique for computing the distribution of a random variable
whose moment generating function is known. In this paper, we apply the
methodology to computing the prices of various European-style options, whose
returns processes are not the Brownian motion with drift assumed in the Black-
Scholes paradigm. Through a number of examples, we show that the method-
ology is generally accurate and fast.
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1 Introduction.

We are going to be concerned with the pricing of a European put option on a
share whose price at time ¢ is denoted exp(X;). According to arbitrage-pricing
theory, the time-0 price of the option is

Price = E e "T(e* — &*7)*, (1.1)

where P is the (risk-neutral) pricing measure 2, the expiry of the option is T,
and the strike is e®. For the time being, we assume a constant interest rate r. In
the case where X is a Brownian motion with constant drift, the price is given by
the Black-Scholes formula, but the assumptions underlying the Black-Scholes
analysis are often questioned, and various other models for the returns have
been considered; see [HPR95| for a selection of the models considered. Without
attempting to pick out any ‘good’ alternatives from the vast array already on
offer, what we shall do here is show how classical statistical techniques for
computing (approximations to) the tails of distributions may often be applied
to such pricing problems.
The first step is to rewrite the price (1.1) as

Price = e* " P(Xy < o) — e TE[ ¥ : X1 < a], (1.2)

the difference of two terms. It will be our standing assumption that the
cumulant-generating function K of X, defined by

Eexp(2X7) = exp(K(z)), (1.3)

is finite in some open strip {z : a_ < R(z) < a4} containing the imaginary
axis, where R(z) denotes the real part of complex z, and a_ and ay > 1 may
be infinite. With this assumption, we can rewrite 1.2 in such a way that the
two parts of the expression appear quite similar, namely

Price = e* " 'P(X7 < a) — e TTEOP (X7 < @), (1.4)
where we define the probabilities P, by
E, exp(zXr) = Elexp((z 4+ y) X7)] e KW (1.5)

for any y € (a_,ay). Clearly, the cumulant-generating function (CGF) of the
law P, is given as
Ky(z) = K(y + z) — K(y), (1.6)

20f course, the examples we shall be discussing will be examples of incomplete markets,
so there is no unique equivalent martingale measure. We shall cut through the soul-searching
and assume we have reached an equivalent martingale measure we are happy to work with.



so if we can find an (approximate) expression for P(Xr < «) using the CGF K,
we are in a position to find an approximate price for the put option. Computing
such approximations is the business of the classical saddle-point method of
statistics; the main ideas of the method are explained with examplary clarity
by Daniels [Dan87] and Wood, Booth & Butler [WBB93], and we could not
hope to better these. In the Appendix, we summarise the method (without
proof), and refer to [Dan87] or [WBB93| for more details. For an extremely
thorough presentation of the entire method, see Jensen [Jen95]. If we know the
CGF of X7, we can in principle compute the price of the option by inverting
the Fourier transform, and with the fast Fourier transform this can be done
reasonably rapidly. Indeed, the saddle-point method starts from the Fourier
inversion formula, but by considering a well-chosen contour of integration and
approximating the principal contribution of the integrand, it turns out that
no numerical integration is needed to come up with an approximation which
is usually extremely accurate. The other virtue of the saddle-point method is
that the approximation to the price is actually an analytic expression, so it
is possible to discover (for example) the local behaviour of the price as some
parameter is varied.

In Section 2, we explore a number of examples where the log-price pro-
cess X is a process with stationary independent increments, or Lévy process
(see Rogers & Williams [RW87] Chapter VI, or Bertoin [Ber96] for more back-
ground on Lévy processes.) As a simple first example, we take the situation
where X is a drifting Brownian motion plus a compound Poisson process.
We compute the prices of the option, using numerical integration (FFT), and
compare with the saddle-point approximation. Our next example takes X to
be a gamma process, and computes the price by FFT and by saddle-point
approximation, and our final example uses the hyperbolic distribution of re-
turns advocated by Barndorff-Nielsen, and Eberlein and Keller [EK95]. Once
again, we compute the price by exact means, and compare with the saddle-
point approximation. Further examples of this kind are left to the reader;
Hurst, Platen & Rachev [HPR95] list a number that have been studied in the
past. Gerber & Shiu [GS94] consider pricing of options on a share whose log
price is a Lévy process. They arrive to an expression ((2.15) in [GS94]) for the
price of a European call which is equivalent to 1.2 above, and study a number
of examples. They argue also that one can find a similar expression for the
price of an exchange option (Corollary 1 in [GS94]), and it is clear that the
saddlepoint method can as well be used for computing the approximate value
of such an expression.

As a further application of the saddlepoint method, we remark that the prices
of options in various stochastic volatility /stochastic interest rate models (as in



Heston [Hes93a] or Scott [Sco95] for example) can be computed, since all that
is needed for the saddlepoint method is a simple expression for the character-
istic function.

2 Lévy returns.

2.1 Jump-diffusion processes.

The first application of the method is to the case in which the prices are
modelled by a jump-diffusion process, specifically X is a drifting Brownian
motion plus a compound Poisson process in which the size of the jumps is
normal with mean @ and variance 2. The function K is then

o, 7,
K(z):T(cz—i—?z +)\(exp(az+3z)—1)) (2.7)
where
02 2
c:r—g—)\(exp(a—l— ?)—1) (2.8)

Let us fix the values of the parameters as in the following table

o| r | Sy | A a 0
11.05] 1 |5(-001](.1

and let T € {.1+.05k};%, and o € {—.11 + .01 k}2L,. Figure 1 displays the
price surface obtained using the Lugannani and Rice saddle-point approxima-
tion.

In figure 2 we can see the difference between the prices computed using the
saddle-point approximation and the prices computed by numerical integration.
We then compute the volatilities that are implied by the LR prices. Recall
that the Black-Scholes option pricing formula for a put option with strike price
K, maturity T, volatility o, interest rate r and initial price of the underlying
asset Sy is

PBs(T, a, T, S(),K) = K exp(—r T) (I)(—dg) — S() (I)(—dl) (29)
where p ,
log 20 T
dy = gk T +%) (2.10)
oT
and < ,
log 22 - )T
d2:ogK+(T 7) —d, — o VT (2.11)




Figure 3 displays the volatility surface obtained by computing the value of the
volatility parameter that is needed to obtain the LR price using BS formula
when r, T, Sy, K = exp(«) assume the same values in both cases.

Finally we match the variance of the log price in the standard BS model and
the BS model with jumps, by taking the BS volatility 6 = /02 + A(a® + ~2)
and compute the put option prices Pgg(r,d,T, Sy, exp(«)) using Black and
Scholes formula. The results are displayed in figure 4. As we can see the error
are ten times bigger if one tries to use Black and Scholes formula with the
‘volatility’” obtained from the second moment of the jump diffusion model.
We display some of the results on the following table 3:

time to a=—.05 a=10 o = .05

maturity || LR NI % LR NI % LR NI %
.25 .0210 | .0208 | 1.21 || .0393 | .0388 | 1.06 | .0688 | .0684 | 0.51
. .0347 | .0346 | 0.44 || .0542 | .0540 | 0.44 | .0812 | .0809 | 0.27
1 .0515 | .0514 | 0.13 || .0711 | .0710 | 0.12 || .0959 | .0958 | 0.09
2 .0691 | .0690 | 0.03 || .0877 | .0877 | 0.03 || .1101 | .1101 | 0.02
5 .0844 | .0844 | 0.00 || .0999 | .0999 | 0.00 || .1177 | .1177 | 0.00

Table 1.

In table 2 we give the volatility implied by the prices of table 1.

maturity | a=—-.05 ]| a=0|a=.05
.25 2314 .2259 .2306
2372 2358 | .2366
.2408 .2406 .2408
.2430 .2429 .2430
.2443 2443 | .2443

Table 2.

O DN | e

2.2 Gamma processes.

As a second example we consider the case in which the returns of the stock are
modeled by a subordinated process given by a gamma process subordinated
to Wiener process (X (t) := c W(G(t))). In this case the cumulant generating

3Note that the prices that are reported in all tables are rounded if the fifth digit is > 5
|pricent — pricerg|

- is computed before such
Ppricens

and truncated otherwise; the relative error 100

operation takes place.



function is given by

K(z)=T (cz+log (@)) (2.12)

czr—log( b 2)
-5

The use of this kind of processes has been suggested by Heston in [Hes93b]
and by Gerber & Shiu [GS94].
The values for the parameters that have been used are

o| r | Sy| B
d71.05] 1 .25

where

The following table gives the results obtained using the Lugannani-Rice method,
the numerical integration method, and the relative errors.

time to a=—.05 o= a=.05
maturity | LR NI % LR NI % LR NI %
.25 .0084 | .0114 | 26.39 || .0145 | .0218 | 33.58 || .0519 | .0565 | 8.15

0179 | .0199 | 10.04 || .0309 | .0337 | 8.32 || .0592 | .0620 | 4.61

.0310 | .0319 | 2.85 | .0468 | .0477 | 1.98 || .0704 | .0714 | 1.32

.0466 | .0448 | 0.65 | 0.0604 | .0606 | 0.47 | 0.808 | .0811 | 0.34

Ul N | e

.0546 | .0547 | 0.09 || .0675 | .0675 | 0.07 || .0828 | .0828 | 0.06

Table 3.

The values of the parameters (there is only one degree of freedom in the choice)
have been chosen in such a way that the implied volatilities are between 0.1
and 0.2, as the following table illustrates.

maturity || a = —.05 | a = a=.05
.25 1722 1391 | 1676
5 1751 .1616 | .1692
1 1830 1786 | .1793
2 .1901 1890 | .1890
5 .1962 1959 | 11959

Table 4.



2.3 Hyperbolic returns.

As a last example we consider the case in which the return of the share is
modelled, at any time ¢, by a random variable with hyperbolic distribution.
This choice has been suggested by Barndorff-Nielsen and has been analyzed
by Eberlein and Keller in [EK95].

The function K is given by

K(z) =T (rz Lo Ve +ataga(l - z)> (2.13)

a3

We consider the following parameter values

o r | Sy | oo
2501.0611 (.71

The following table gives the results obtained using the Lugannani-Rice method,
the numerical integration method, and the relative errors.

time to a= —.05 a=20 a = .05

maturity | LR NI % LR NI % LR NI %
.25 .0150 | .0198 | 24.35 || .0316 | .0368 | 14.29 | .0609 | .0662 | 8.01
) .0312 | .0336 | 6.99 | .0496 | .0521 | 4.86 | .0762 | .0788 | 3.30
1 .0500 | .0510 | 2.01 | .0689 | .0700 | 1.58 | .0933 | .0945 | 1.22
2 .0692 | .0696 | 0.58 | .0876 | .0880 | 0.49 | .1097 | .1102 | 0.41
5 .0865 | .0866 | 0.11 || .1020 | .1021 | 0.10 | .1197 | .1199 | 0.09

Table 5.

Once more the values of the parameters have been chosen in such a way that
the implied volatilities are around 20 percent as the following table illustrates.

maturity | a=—05 ]| a=0| a=.05
.25 .2254 2157 | .2191
2331 2289 | 2291
2397 2379 | .2375
.2442 2435 | .2432
2478 2475 | 2474

Table 6.

Ol DN | e




3 Conclusions.

We have shown how the saddlepoint method can be used to price European
puts on assets whose return process is more general than the standard Gaussian
model. The key feature is that the moment generating function of returns
must be sufficiently explicit that we can analyse it. Various examples with
Lévy returns have been shown to be amenable to this approach, which also
embraces many stochastic volatility /stochastic interest rate models discussed
in the literature. The accuracy of the approximation improves as the expiry
increases; this is not surprising, since for longer expiry, the return distribution
will be a better approximation to the Gaussian base used in the saddlepoint
approximation. For expiry one year or more, we get accuracy of the order of
2%, comparable to the accuracy of parameter estimates (or even a lot better!)
Thus the approximation is good enough to be useful, and is able to compute
thousand of options a second, so it is very fast. There is scope for improving the
accuracy considerably, by more cunning choice of the comparison distribution,
but this choice would depend on just what return distribution one wished to
work with, and this is more an econometric issue, for which there are no clear
answers.

A Appendix

We give the briefest explanation of the saddle-point method, without any
attempt at proof. Jensen [Jen95] is a careful account.

As explained above, our goal is to approximate the tail probabilities P(X >
a), where X is a random variable whose distribution is known through its
cumulant generating function (CGF) K;

Eexp(z X) = exp K(z)

The CGF K is assumed analytic in some strip containing the imaginary axis.
Typically, K will be reasonably tractable, but the distribution F' of X will not
be.

By Fourier inversion,

P(X > a) =lim e~ 1m0y F(dz)
oo ,—ita

= lim -
elo J_ e+t

exp{ K (i 15)}2d—7tT (A.14)



since the Fourier transform of z — exp(ea — €x) I1zsqy is t — €' (e — it) ™"
Now letting € | 0 in A.14 may be problematic because we have a pole at zero,
but by Cauchy’s theorem we have for any ¢ > 0 in the strip of analyticity of

K _ .
/“’o exp{—za+ K(z)} dz /C+’°° exp{—za+ K(z)} dz
ico €+ =z 271 Jo i €+ 2 2w
c+io00 _ K d
R / exp{—za+ K(2)} 2 (c10) (A.15)
c—ioo z 2ms

and the key to the saddlepoint method is a cunning choice of c. In fact, we
choose ¢ so that the function K(z) — a z is minimised;

K'(c)=a

This value of ¢ will be strictly positive if and only if @ > K’(0) = E X, which
we assume now on (if a < EX, we estimate P(X < a) mutatis mutandis.) *
The saddlepoint approximation is achieved by comparison with some ‘base’
distribution with CGF K. Classically, this is the Gaussian distribution, for
which Ky(z) = £z%, but it is important to realise that one may use other
base distributions. The base distribution is assumed nice enough that we can
find the distribution Fj quite explicitly. By shifting and scaling Fj, we may
transform Ky to z = —€z + Ko(Az) = Ky(z), say, for real constants & \
which we may choose to make the minimum of K, at ¢, and to match the
second derivatives of K, and K there. This turns out not to be the right thing
though, because although the behaviour at z = c is well approximated, the
behaviour at z = 0 is not. Instead we pick £ so that

min Ky(z) — €z =min K(z) —ax

and then suppose that we have an analytic map z — w(z) such that
Ko(w)—&éw=K(z)—az (A.16)

We have in particular that @ = w(c) is the place where Ky(z) — £z is min-
imised, and w(0) = 0. Hence by change of variable in A.15, with T the image
of ¢ + 4R under w,

P(X>a)=/rexp{K0(w)—§w L dz dw

zdw 273

“Incidentally, the name “saddlepoint” comes from the fact that the function z — K(c +
z) —a (c+2)) looks like 32% K"(c) for small 2, and the real part of this is the saddle-shaped
function (z,y) - K" (c) (z* — y?)



~ [exptatu) - gut o 2t [ expikatu) - gut (4 - 1)

The first term is nothing other than 1 — Fy(¢), and for the second term, we
note that there is no singularity of the integrand at w = 0; since w(0) = 0,
we have that z = w %(0) + O(w?) for small w. So this allows us to expand
the term % j—fv — % about w = w and collect terms; the power-series expansion
for z = z(w) about w = w can be evaluated to any desired order using A.16,
since the power-series expansions of Ky and K are assumed known.

The resulting integrals of the form [, w" exp{Ko(w) — { w} dw can be writ-
ten down in terms of the (known) density of Fjy, and its derivatives. Rather
surprisingly, for many practical applications, one term is enough; in this case,
the expansion gives the celebrated Lugannani-Rice formula (see Lugannani &
Rice [LR80])
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Figure 1: Saddle-point approximation option prices
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Figure 2: Difference between LR prices and numerical integration prices
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Figure 3: Implied volatility surface
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