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Abstract

We present two new stochastic—volatility models in whickiap prices for European
plain vanilla options have closed—form expressions. Thdetsoare motivated by the well-
known SABR model but use modified dynamics of the underlyisget The asset process
is modelled as a product of functions of two independenthgtstic processes: a Cox—
Ingersoll-Ross process and a geometric Brownian motionagjatication of the model to
options written on foreign currencies is studied.
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1 Introduction

There is a growing interest in stochastic volatility modalall areas of financial mathematics:
see for example Hull & Whitel (1987), Hull & White (1988), St¢1987), Wigqgins (1987),
Johnson & Shanno (1987), Stein & Stein (1991), Heston (1,998mann et al. (1992), Dupire
(1992). One stochastic volatility models which has gaineagpopularity with practitioners in
particular for modelling the foreign exchange market issbecalled SABR model Hagan et al.
(2002). As presented In Hagan et al. (2002) it has the adgarttat it allows asset prices and
market smiles to move in the same direction. Moreover, aecleform (approximate) formula
for the implied volatility is given. This implied volatiit is not constant but a function of
the strike price and some other model parameters. Hence dheehprices and market risk,
including Vanna and Volga risk, can be obtained very easWareover, the SABR model is
said to fit the implied volatility smile quite well. Howevehe SABR option pricing formula
is not the option price corresponding to the underlying Iséstic process, but is obtained by
using an approximation, and as such must be treated witlhoocadhe asymptotic is based on
the assumption that the time-to-expiry is small, and reeenk of Benaim [(2007) shows that
the extreme-strike behaviour of the formula is not consistéth arbitrage-free pricing.

The aim of this paper is to build an alternative model whidiaires many of the desirable
features of the SABR model but also leasct closed—forraxpressions for the price of a Euro-
pean call option. The expressions involve a one-dimenskiotegral of elementary functions.
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2 MOTIVATION

We begin by applying certain natural transformations toS#&R model, which suggest
varying the model in such a way that the discounted asset primcess becomes the product of
two independent processes, whose transition densitidgnaken in closed form. The explicit
formulae for the option prices follow easily from this repeatation.

We then generalise the model in Sectidn 4. We define the disedwstock price as the
product of a geometric Brownian motion anduactionof the CIR process. The function used
is essentially a confluent hypergeometric function. Thisioh makes the discounted asset
price a martingale without restricting the choice of modatgmeters, creating a new model
with seven parameters, in contrast to the four paramete34BR, and the three of our original
variant.

We therefore end up with a stochastic volatility model whigltonsistent with arbitrage-
free pricing for all strikes and maturities. We do not relyapproximation techniques to derive
the option prices for European plain-vanilla options butaesed—form formulae. This is rarely
possible for other stochastic volatility models. Anothet tbo common feature of our model
is the fact that we constructed an asset price process whmiartingale and not only a local
martingale and has finite higher moments, see e.g. Sin/(E9®@BAndersen & Piterbarg (2007)
for further discussion on this matter.

The recent preprint Jackel & Kahl (2007) presents a modeilai to the ones we consider
here.

2 Motivation

The SABR model is a stochastic volatility model in which tlsset price and the volatility are
correlated. The stock pricgis assumed to solve the SDE

dS = o SPdw, do = nodB, dBdW = pdt,

for some constants € (0,1), n > 0, p € (—1,1) andW, B are Brownian motions. In this
model, singular perturbation techniques are used to oBtaiopean option prices. Closed—form
approximations to the option price and the implied volstidre stated in Hagan et/al. (2002).
Here, we transform the basic SABR model, making various gbamalong the way, to arrive at
a new model for which option prices are available in closethfol he prices are represented as
one—dimensional integrals. It should be emphasised timt#ction is purely for motivation;
we take the basic SABR model and carry out various transfooms changing the dynamics
in various ways when it suits us, and making whatever siyiplif choices appear helpful at the
time. The reader for whom such free—form mathematics ishe@nad should immediately pass
to the next section, where an explicit model is proposkednitio, inspired by, but completely
independent of, the account of this section.

Recall the constant elasticity of variance model (CEV mg@elx (1996)) where the stock
price solvesiS = ¢S”dW for a constantr > 0. In this model it can be shown that the
processy” = 57, v = 2(1 — 3), solves the SDE of a time—changed squared Bessel process. In
particular,Y; = X (~%0?t/4) whereX is a Bessel process with dimensigfi — 1), that is,
dX =2(1 — v~ Y)dt + 2v/XdB, see for example Delbaen & Shirakawa (2002). Then,

1
dY = ~oVYdW + 57(7 — 1)o?dt.
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3 FIRST ALTERNATIVE TO SABR

Let us apply this transformation to the SABR model. We havadoount for the fact that in
the SABR model the two Brownian motiodsand1V are correlated. We therefore define the
process’”’ as the sum of two independent squared Bessel procéssesy + i, where

dy = yo/ydW' + ac*dt,

dy = 70\/50[3 + bodt,
for constants, b which sum toy(y — 1) /2. Then the correlation i8Y’do = no*y+/ydt instead
of dY do = no*yV/Y pdt, so that now the constaptchanges to the variablg’;/Y . We can set
some initial value fop by choice ofYj, 1y, but notice that we cannot modsgativecorrelation

this way.
A particularly obliging choice ob is to takeh = ~2/4 since then

- 0y Y
d =—dB=—4d
Vi 5 i

2
~_ (79
y_<2n) '

The corresponding choice farwill be a = —3(1 — 8) and if x = y/o? we find that

one solution of which is

dx = y/xdW' — 2nxdB + (a + 3n°z)dt.
For tractability, we propose instead to take- 0%z’ where
da' = ' dW' + (a + 3n*z’)dt,

which is of course a different model, having the virtue tiaando are independent. This leads

to the model
7 2
n:yt+gt20t2<<%> +x;>,

wheres andz’ are independent. However we will not necessarily Hév€ a local martingale.

3 First Alternative to SABR

3.1 Model Description

Guided by the argument of the preceding section, we promoseptesent the discounted asset
price process by

1

St = }/;; = (U?Zt) y (1)

2=



3.1 Model Description 3 FIRST ALTERNATIVE TO SABR

with z ande the diffusions

dz = (a; — ag2)dt + 2+/zdW,

2
do = nodB, @)

where0) < nand0 < v < 2 are constants ard’ and B are two independent Brownian motions.
The constanta; anda, are given by

2(v—1 2 — 2

o =202 7)777 3)
8 Y

values which (as we shall shortly see) maka martingale.

Remark 3.1. If a; < 0 the process will hit 0 almost surely. Let := inf{0 < ¢: 2, = 0}. For

a1 < 0 we consider the stopped procesgs. rather thar.

Definition 3.2. We refer to the model for the asset price definedlby (1), (2) @hds the
stochastic volatility model (SV1)

We show in the following lemma thét is a martingale.

Lemma 3.3. Suppose the diffusionsand o satisfy [2) and the parameters are aslih (3). Then
2 1
the process; = o, z; is a martingale and solves the SDE

2 (dW
as=5-|—+ dB) .
g ( vz o
A proof is given in the appendix.
Before we can compute the prices of European put and caégrie formulate the follow-
ing lemma which specifies the transition density of the pssece

Lemma 3.4. Suppose the diffusionsatisfies[(R). We define for< T’

2&2
= = —ag(T —t
T i Cepam ) 4T caep-ald =),
aq 1
vVi=cz =——1
T q 9

Then

1. Givenz, zr is distributed aszl—c times a noncentraf? random variable with:, degrees
of freedom and noncentrality parametar:

I
o = 2_Cxa1(2“)'

2. Fora; > 0 the transition density from; to z7 is given by

(Y

q/2
Pl ) = cexp(—u—v) () L (2v/w), (4)
where/,(-) denotes the modified Bessel function of the first kind of arder
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3.1 Model Description 3 FIRST ALTERNATIVE TO SABR

3. Ifa; < 0the CIR process will hib a.s.. Since we require that it is then absorbed,ahe
distribution ofz has point mas$ — fooop(zt, z)dz > 0 at zero. Fora; < 0 the transition
density is given by

(%

p(zt, 2r) = cexp(—u — v) <a>q/2 Iq(2v/uv).

The proof is given in_Going-Jaeschke & Yor (2003). For addial information we refer
also ta_ Cox et all (1985) and (Glasserman, 2004, Chapter 3.4)

In the following we exploit the independence of the two pgsEss and z and compute
prices for European put and call options by conditioningsEtlows us to get analytic expres-
sions for the option prices as the next theorem states.

2 1

Theorem 3.5(SV1 Model) Supposes; = o, 2, , where the diffusions and ¢ satisfy [2) and
the parameters are as ifil(3). Letdenote the interest rate arf} := ¢S, is the underlying
asset price. Then the time—0O—price of a European put opfidh' and of a European call
optionC*V! with expiryT” and strike pricek is given by

PVY(So, T, K, 1r,m,20,7) =E [(e7"K — Sp)7] :/ hi(2)pr(z)dz (5)
0
and
CSVl(S()) Tv K7 1, 20, 7) =E [(ST - 6_TTK)+} = / hQ(Z)pT(Z)dZ, (6)
0
where
2 2
Ia(2) = e " TKD(—dy) — o3 2 exp (% (% - 1)) @ (~dy).
2 2
ho(z) := 0y 27 exp (ﬂ (g — 1)) ® (dy) — e T K®(dy).
Y 8
Here

2
2 g ooz |\ _n
dy:=d —VT, dy:=—+=11 — =T
1 2+ ’}/ ) 2 27}\/T (Og 6TTK) 7 )

®(-) is the cumulative distribution function of the standard mai distribution andpr(z) :=
p(20, 27) is the probability density function of the non—centkdl distribution as specified in

Lemmal(34).
The integrals[(5) and16) can be rewritten as the definitgnate

1 1—x 1—xa)\ dx
h pbr >
0 x x x
and can be evaluated by numerical integration. Alternititheey can be evaluated by Monte

Carlo methods by sampling from a noncentyaldistribution.
The theorem is proved in the appendix.
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Remark 3.6. In this model, the correlation between the asset and itstilitlawill always
be positive, in contrast to the SABR model. Hagan et al. (2@0&te that with FX options,
a key feature of the asset dynamics is that if the spot ribes) the place where the implied
volatility is minimal should also rise, and this was a featthrat they claim is not reflected by
many stochastic volatility models. The model we propose ladiows for this feature to some
extent, since a shift of has the effect of multiplyingg by some constant, but not altering
the dynamics in any other way. Thus if the spot moves upwaedtdwan increase in, then
the implied volatility surface also shifts to the right. Hewer, the effect of a change inis
ambivalent.

Remark 3.7. In the context of FX options, with” denoting the price of one unit of foreign
currency in domestic currency units we have that= exp((ry — 74)t)Y; is a martingale. Then
the time—0—price of a European put option is given by

E[e (K - Y7)T] = e "E [(Ke )T — Sp)*]

We denote the corresponding put and call prices in our model b
PSVY(Sy, T, K, ra,77,m, 20,7) andCVY(Sy, T, K, 71,7, 1, 20, 7)-

3.2 Empirical Analysis

This section presents some empirical results. We consigler used by Bisesti et'al. (2005).
In the FX market option prices are not quoted directly. Thetgs are in terms of the Black

Scholes implied volatility. We consider EUR/USD volatilquotes as of 12 February 2004. On
that day the spot exchange rate was 1.2832. The data cofisémvations for nine different

maturities (1 and 2 weeks; 1, 2, 3, 6, 9 months; and 1 and 2 yaads/ different strikes.

3.2.1 The Fitting Criterion

In the classical Black Scholes model the exchange rate gsam@ves the SDE
dSBS = SBS((’Fd - ’f’f)dt + O'BSdW),

wherery, 7, denote the constant domestic and foreign interest ratecggply. The volatility
oB% is assumed to be constant. The price for a EuropearCéalland putP?9 at time0 with
maturity 7" and strikeK is then given by

CB5(So, T, K,rg,m7,07%) = 7T [Spe" DT o (dP5) — Ko (dF?)],
PB5(Sy, T, K, rq,r5,0%%) = 7T [K®(—d55) — Spe" T d(—aP)],

whered?’; = { log (So/K) + (ra — ry £ 1(c”)*) T }/UBS\/T,
from which implied volatilities are computed from prices.

A common feature in the FX market is that the implied vola&B are not constant but U—
shaped (volatility smile). In the following we try to fit thev& model to the data such that
we minimise the squared difference between the observeliednyolatilities and the model
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implied volatilities. We denote by*VV := o5V (n, 2, v) a model implied volatility meaning
that it solves

PB3(S,, T, K, rd,rf,a(SV1)) — PVY(S,, T, K, Ta,Tf, 1, 20,7Y) = 0.
Supposéqgi™ed  ghrrliehT ¢ RN s the vector containing the observed implied volatil-
ities for European options corresponding to the ve¢fdr, . .., Ky)T € RY of strike prices,
(T,...,Ty)" € RY of maturities, andray,...,ran)", (rp1,...,rrn)" € RY of domestic
and foreign interest rates respectively. denotes the asset price at time zero. In the following
we minimise the squared difference between the observelieidhpolatility and the implied
volatility derived from the model price, i.e. we compute

. . 2
min Z <0’§SV1) (T], 2o, 7) N U;mplzed) )

3.2.2 Implementation

The computation of the option price involves a numericalton of an integral

| e

see Theorein 3.5. This requires some care since in many egaihglintegrand has a very high
and small peak. Simple integration routines might misspbist and might therefore compute
too small prices. To overcome this problem we did the follayvi

The integrand consists essentially of a product of a Blackes type formula(-) and the
density of a non centra}? random variabler(-). So there are special functions involved: the
cumulative distribution function of the standard normaitdbution® and the modified Bessel
function of first kind/,. Both function can cause problems (regarding numericatigian)
when considered with very small or large arguments. We therexpressed in terms of the

logarithm of the complementary error functibig (% f;o exp(—tz)dt). Moreover we did not

computel, directly, but its scaled versiofy(z)e~ .

Then we considered the logarithm of the integrand rather thea integrand itself. We used
an optimisation routine to determine the maximum of the tidlgen of the integrand:*. We
then split the area of integration and computed

*

/ h(z)pr(z)dz +/ h(z)pr(z)dz.
0 T*
Therefore we ensured that the numerical integration reudid not miss the main mass. The
pricing routine was implemented @ using theGNU Scientific Library

We used different optimisation routines to fit the data. Wedugradient search methods,
simulated annealing and the simplex algorithm by Nelder &M &1 965).
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Figure 1: Comparing the fit of the SV1 model to the fit of the SABRBdel.

3.2.3 Empirical Results

In this section we present the empirical results from thdyaisfor one maturity (3 months)
only. The model parameters are as follows: The exchangeatdime 0 isS, = 1.2832, the

maturity is7" = 0.2493 and the interest rates arg = 0.0112995 andr; = 0.0209007. We

consider 7 observations. Figure 1 shows the results. Wehsg¢eotir model (SV1) and the
SABR model seem to fit the European put prices well. Howevevgei consider the implied
volatilities we see that our model does not fit the impliedatitities as well as SABR does.
SABR seems to fit the observed smile perfectly. However we habear in mind that our

model contains only three parameters,,~ (sinces, = \/‘j—g) whereas the SABR model
contains 4 parameters.

4 Second Alternative to SABR

4.1 Model Description

We now generalise the approach of the previous section. MWeastume that the discounted
stock price can be written as a product of two independertigases. However, we now assume
that the discounted stock pri¢eis a product of a geometric Brownian motion andeneral
function of a CIR process:

Sy = 019(z1), (7)
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whereo is a geometric Brownian motion ands a CIR—process, i.e.

do = o(udt +ndB),

8
dz = (a1 — axz)dt + 2y/zdW. (8)

The two Brownian motion# andi¥ are assumed to be independent, which makes the analysis
tractable, but restricts the correlation between assetvatatility to be non—negative. The
functiong solves the following second order ODE

229" (2) + (a1 — a22)g'(2) + pg(z) = 0. (9)
[Observe thay(z) = 2'/7 is a solution ifa; = 2(1 —~y~') andy = (2 — v)n?/7?, so model

SV1 is a special case of model SV2.] The ODE (9) is almost a \aker ODE. Its solutiony
can therefore be expressed in terms of the Whittaker’s fomét’,; andWy, and is given by

agz a +4 1
g(z) = Cl e%z_fle\/[ (M’ —— 4+ ﬂ %)

4as 2 47 2
agz _ay +4p 1 ar; asz
O, e X 2w, (%22 T, 4 422
+Cqe z W( 4@2 ) 2_'_ 47 9 )

whereCy, C; are some constants. The Whittaker functidiig; and Wy, are related to the
Kummer functionsV/ (-, -, -) andU(-, -, -) as follows, see Abramowitz & Stegun (1964):

Wi, v, 2) = exp(—1/22) 2 M(1/2 + v — p, 1+ 20, 2),
Wi (i, v, 2) = exp(—1/22)2Y Y U(1/2+ v — pu, 1+ 2v, 2).

The Kummer functions are defined by

where(a), = a(a+1)(a+2)...(a+n—1), (a)o=1and

™ <r( M(a,b, 2) 1_bJ\4(1+a—b,2—b,z))

Ula,b,z) = sin(7b) 1+a—0)I(b) ['(a)I'(2 —b)

Thereforeg is given by

. n A a2 a9 (%) Mmoo ap a2 a9 (%)
g(z,al,ag,,u) - C(1]\4 <—CL_2’E’7) (?) +C2U <—CL_2’E’7) (?) . (10)

Definition 4.1. We refer to the model for the asset price defined[by [7), (8)(&8Y as the
stochastic volatility model (SV2)Moreover we require thgt < 0 anda; > 2,as > 0 in the
following.

With this choice ofy we have found a martingale:
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Lemma 4.2. Suppose the diffusionsando satisfy [8) and; is given by[(ID). Then the process
Sy = 0.9(z) is a martingale and solves the SDE

s, = 8, <9 Cily saw, + ndBt) .
9(z)
A proof is given in the appendix.
Then the prices of European put and call option can again beedein closed form by
conditioning.

Theorem 4.3(SV2 Model) Suppose; = 0,9(z;), where the diffusions and o satisfy [(8) and
g is given by[(ID). Let denote the interest rate anf} := ¢S, is the underlying asset price
process. Then the time—0—price of a European put optio? and of a European call option
CSV2 with expiryT and strike pricek is given by

PSV2(507T7 K7 T, a17a27207/“b7n) =E [(e_TTK - ST)+} :/ El(Z)pT(Z)dZ (11)
0

and
C5V2(So, T, K, a1, a2, 20, pt,n) = E [(Sr — e ™TK)*] = /0 h ho(2)pr(2)dz, (12)
where
hn(2) = e " TK®(—dy) — gog(2)e T ® (-jl) ,
ha(2) i= oog(2)e" T D (CZI) — TR (dy).
Here

i (s () (1))
dy = dy — VT

and®(-) is the cumulative distribution function of the standardmat distribution andr(z) :=
p(20, 27) is the probability density function of the non—centxdl distribution as specified in

Lemmal(34).

Again the proof is given in the appendix.

Remark 4.4. In this stochastic volatility model the option price is effieely an average of
Black Scholes prices. Recall that in the classical Blacko&shmodel, where the stock price

is given byS;, = Spexp ((7’ — g) T+ nWt>, the put price is given by

PP3(Sp) i= e T K®(—dy?) — Sp® (—dP®),

10



4.2 Empirical Results 5 SUMMARY

where
1 S n?
BS .~ (log 22 -
“ nﬁ<0g<K)+<H2)T>’
dQBS = d’fs —nVvT.

Therefore if we substituté, in this formula by the random variablee"” g(z) wherez is a
non—central? distributed random variable we find that(z) = PZ%(oqe*? g(z)). Moreover

PSVZ(‘SOaT? K7 r, a17a27Z07:u77]) =K [PBS<O-06MT9<Z)):| :

Remark 4.5. The new stochastic volatility model SV2 contains 7 modebpsatersu, as, 2o,

wu,n, C1, Cy. Againo, can be derived fromy, = g(sz‘;).

Remark 4.6. This modelling approach can be modified by replacing the Giétgss by an
Ornstein—Uhlenbeck process. The corresponding fungtioncan then still be expressed in
terms of the Kummer functions. For this extension it is plolesio allow for correlation between
the Brownian motion driving the geometric Brownian motigrdahe Brownian motion driving
the OU process. European option prices can still be obtameldsed form.

4.2 Empirical Results

We now fit the second stochastic volatility model SV2 to theea@xample considered already
in the previous section. We consider a European put optitim thiee months expiry. Figure
shows the implied volatilities and the fitted option pricesnpared to the observations and
the SABR model. We find that the both the SV2 and the SABR mot#idiput prices well.
However, the SABR model still seems to fit the implied voigtismile better.

S5 Summary

The aim of the paper was to construct a stochastic volatilitych is close in spirit to the
popular SABR model but does not rely on approximation teghes. Moreover we focused
on the analytical and numerical tractability when choosimg dynamics and relationship of
the stochastic processes involved. We obtained two stbchamatility model which satisfy
these criteria. In the first model the discounted asset psiceodelled as a product of two
independent processes: a geometric Brownian motion andvarpaf a CIR process. In the
second, which generalises the first, we express the dised@siset price as a product of two
independent processes: a geometric Brownian motion andfaueat hypergeometric function
of a CIR process. For both models we derive analytic expsasdor prices of European put
and call options which is rarely possibly in other stoctagtilatility models. The prices can be
expressed as integrals of elementary functions and caeftinerbe computed very efficiently.
The models fit well to FX option prices, and quite well to FXioptimplied volatilities.

11
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Figure 2: Comparing the fit of the SV2 model to the fit of the SABRBdel.

A Proofs

Proof of Lemma_3]3First, we show thab is a local martingale, using Itd calculus, and finally
we argue a bound ofi to show thatS is a martingale.

Applying Itd 's formula to the functions — 2> andz — 27 we get

2 12 (2
do’ = 205 Mo + == (— — 1) a%_2027)2dt
v 27\
2 — 2
— o7 < 27n%ﬁ4——QdB),
Y Y

1 11 /1
dz% = —z%_ldz + —— <— — 1) z%_24zdt

(13)

g 27\

2 a 2(1—7) 2
S T g aw )
~ (( > as + vz + \/E

Using the product rule and the independence of the Browniatioms B andV gives

2 1 2 1 1 2
s =d (a?z?) =ovdz7 + zvdo
11 2(1 — 2 2 —
—ohzh <<ﬂ —ag + u) dt + —=dW + —7772dt + QndB)
z vz NE 0l

5
2(1 — 2 — 2
(ﬂ —ag + (=) + 7772) dt + —=dW + QndB) .
z vz 0l vz

12
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Plugging in the definition ofi; anda, we get

2 (1 2 1 .
ds = 5= (—dW + ndB) = SZ\/ = +n2dW,
v \Vz TV 2

wherelV is a Brownian motion.

Sinceo is a geometric Brownian motion, it is easy to see that,.,., o, € L* for any
p > 1, and similarlysup,.,.;- 2z € L? for anyp > 1, sincesupy.,.r % is bounded in law
by the supremum of the squared Euclidean norm of an OU praedsgh enough dimension.
ThereforeS is a martingale. O

Proof of Theorerh 315We only show the expression for the put pricé (5) siride (6)nslar.
From Lemma 3.3 we know th&t is a martingale. Hence the put price is the expectationlin (5)
Since the processesando are independent we can compute the expectation by conidigjon
as follows.

2 1
PSSy, T, K, r,n,20,7) =E [(e7""K = Sp)T] = E {(e"‘TK — 07 z%)*}

1

_E lE [(e‘TTK o) t|er = z” _E[h(2)] = /O b (2)pr()dz,

where

2 1

hi(z) =E [(e_TTK — o323 ) oy = z}
> 2 2 — 2 2 * z
:/ (e‘TTK—O'SzveXP <( 727772 ;7 >T+ ;7\7:5)) eXp(_%? ) 4z

2
¢ roexp(—%) 2, g2 [0 1 T dx
= e " K———*"dx —ojzve 7 exp | —= [ 22 —
/—oo \/27T 0 —00 P 2 ’y \/

2 1 _p’r 20°T 20V T
=Ke ""®(a) — o5 z7e” e D <a - Lf)

~
2 1 20V T
=Ke"'®(a) — 05 z7e 7 (Vo <a — 777\/7) :
~
—rTK 2T
whereq 1= — log 627 + T2 1. Then withd, = —a andd; = —a + 2T the
onVT UO;Z% v gt

result follows.

Proof of Lemma_4l2We shall have need of the following result, which can be seeanaap-
plication of Theorem 1.3.5 in _Stroock & Varadhan (1979),utlo we present a direct proof
here.

13



A PROOFS

Proposition A.1. Suppose that is a non-empty open interval, and thatb,b : I — R are
locally Lipschitz inf, o > 0 throughout/. Let P (respectively,P) be the law on path space
C(R*, I') under which the canonical proce3ssolves the SDE

dXt = O'(Xt)th + b(Xt)dt, X() = 29 (14)

respectively, 5
dX; = o(X)dW, + b(X,)dt, Xo = xg (15)

for some fixedro € I. If 7 = inf{t : X; ¢ I}, and Z is the ‘change-of-measure’ local
martingale
dzy = Z, f(Xi)dW, (16)

wheref(z) = o(z)~*(b(z) — b(z)), thenZ is a true martingale if and only if
P(r=00)=1. (17)

Proof. First suppose that (17) holds. Take compact inter¥g)scC I, increasing tal, and let
., =inf{t: X; ¢ K, }. ThenZ! = Z,,,, is a martingale for each, because

Az = 77 F(X0) y<ry AW,
and the drift in the change-of-measure is bounded. Undeguribieability P given by

a|
ap Ft_ '

the processX solves the SDE
dX; = o (X;)dW; + (X)) Ijr<rydt + b(X) Igpsrydt.
Notice that for anyl’ € R

1=FE[Zy] = EZ! 1, <T|+E[Z}: 7, > T]

T

E[Z" 7, <T|+ P(1, > T)

n

= E|Z,, 7, <T]+ P(r, > T).
By hypothesisP(7, > T) — 1 asn — oo, and therefore

EZr] = ElZr:7y <T)+ E[Zr: 7 > T]
= E[Zr:m, <T)+E[Z%:7, > T]
= E[Zp:7, <T)+ P(r, > T)

—

—_

Conversely, ifZ is a martingale, then the law3 and P are equivalent on each;, so the event
{sup,, 7, < t} has probability zero under both and P.
[

14



A PROOFS

For a diffusion[(1#) o = (0, 00), it is well known (see, for example Rogers & Williams
(2000), Chapter V) that 0 is inaccessible if and only(ii+) = —oo and+oc is inaccessible if
and only ifs(co) = oo, wheres is the scale function defined up to irrelevant affine tramator

tions by
T 2b(z
/ {L') = exp{—/ U(,(Z)g

Routine calculations prove thatandoc are inaccessible for the diffusiansatisfying [(8)
provideda, > 2 anda, > 0; for this diffusion,

o(z) =2z, b(@)=a; —ax, §(z)=ax"27" (18)
It remains only to analyse the scale function of the drdasformed version of the diffusion,

for which

=92Vz, bz)=a, —asxx dzg'(x)
O'(.I')—Q\/_, b( ) 1 2% + g(x)

, 8(2) =5'(2)/ (9(2))" (19)

This will require the asymptotics of the Kummer function®atndoc.
We use the first order approximation of the Kummer functiéascording to (Abramowitz & Stegun,
1964, Chapter 13) for > 0 andz — oo

M(a,b,z) = %ezza b (1+0(]=]™), Ula,b,2) =27 (1+O0(|z|™)).

Hence, for large: we can write

A IUNCE oo
g(Z,&l,ag,M) - <2> (Cl ( a27 2 9 ) +CZU< a27 2 ) 9 ))
_ oY) (20)

From the equation§ (18], (119) and120), we see that
/ §'(z) dx = +oo0.

All that remains is to show thqﬁ) ) dx = +o00, and for this we need the asymptotics near
zero ofg.

For smallz, the Kummer functions can be approximated, see (Abramduviregun| 1964,
Chapter 13). Fotz| — 0, M(a,b,0) = 1. ForU(-,-,-) there are several approximation
dependent on the value of the second parameter, see (Abrem&o®tegun, 1964, Chapter
13, formulae 13.5.6 - 13.5.11). Also the order of the appration varies. Since we require
a, > 2, we get for smalk

U( pm o )TF(EQ—M;)

15



A PROOFS

Whichever of these obtains, we see immediately that
9(z) = O(='"7). (22)

asz — 0. Combining [(18),[(I9) and (22), we see that

/ §'(z) de = +o0,
0+

and the proof is complete by applying ProposifionlA.1.
0]

Proof of Theorerh 413From Lemmd_ 42 we know that is a martingale. Hence the option
prices are indeed the expectationsinl (11) (12). Thgseceations can again be computed
by conditioning undet.

PSV2<SO7T7 K7 T, ay, Gz, Z(],,u,'f]) =E [(e_TTK - ST)+}

=E[E[(e"K —org(zr)|er = 2]] =E [le(z)] = /O h hy(2)p(2)dz
and
h(z) =E[(e"K - Sp)t|er = 2] =E[(e K — aTg(zT))ﬂzZ = 7]
_ /_ h (e"”TK — oog(2)e"T exp <_7§T + nﬁx))+ <

[e.e]

N

We compute the integration boundary

2
= ety ) (- )7) =

—n2T
0<e ™K — ogg(z)e' exp ( TS 4 nﬁx)

Hence
)= [ " (K — gt exp (2L 4T ) ) SRELET)
12—_006 oog(z)e! exp 5 nVTx Nor x
= e "TK®(a) — o0g(2)e" T ®(a — nVT).
Then settingl, := —a andd; := —a + nv/T yields the result. O
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