
Consistent fitting of one-factor models to interest

rate data

L.C.G. Rogers 1 ∗ and Wolfgang Stummer 2
*

1 School of Mathematical Sciences

University of Bath
Bath BA2 7AY

UK
and

2 Department of Finance
University of Ulm
Helmholtzstrasse 18

D-89081 Ulm, Germany
email: ws@mathematik.uni-ulm.de

Tel. +49 731 50-23599, Fax +49 731 50-23950

January 12, 2016

We carry out a full maximum-likelihood fit of the popular single-factor Vasicek
and Cox-Ingersoll-Ross models to term-structure data from the US and UK. This
contrasts with the usual practice of performing a day-by-day fit. The day-by-day
fitting gives average errors in yields of the order of 2–3 basis points, whereas with
the full maximum-likelihood fit we found an average error in yield of 3–8 basis
points.

Keywords: term structure of interest rates, Cox-Ingersoll-Ross model, Vasicek
model

JEL classification: E 43, C 13

∗Research supported by SERC grants numbers GR/H52023 and GR/K00448

1



0. Introduction

It is well known that the topics of interest rate and term structure modeling are
very important for actuarial issues, especially for managing ”interest rate risk”
and for valuing insurance assets and liabilities.

Some recent general discussions along this line are given e.g. in Tilley (1988),
Santomereo & Babbel (1997), Reitano (1997) and Girard (2000). In Ang &
Sherris (1997) one can find a nice overview on several different actuarial problems
which involve term structure models – annuity products, insurance products
with interest-rate-sensitive lapses, property and casualty insurance company
outstanding claims reserves, accrued liabilities of defined-benefit pension funds.

Let us also mention some articles which deal with more specific (rather than
general) situations of interest to actuaries: The actuarial immunization problem
in face of a (non-flat) term structure of interest rates was investigated by Boyle
(1978, 1980), Albrecht (1985) and Beekman & Shiu (1988); the latter derive a
duration formula for the poular Cox, Ingersoll & Ross (1985) model (hereafter,
CIR). In the paper of De Schepper, Goovaerts & Delbaen (1992) some interest
rate models for annuities are introduced. A method for the estimation of the yield
curve by means of interpolation can be found in Delbaen & Lorimier (1992); see
also the follow-up paper of Corradi (1996). Pedersen & Shiu (1994) explain
how to use term structure models in order to evaluate rollover options for a
Guaranteed Investment Contract (GIC), which is a popular product sold by
insurance companies in North America. Sherris (1994) uses a certain interest rate
model in order to evaluate loan contracts which are similar to insurance policies
with a surrender option. Bühlmann (1995) explains how to use stochastic interest
rates in life insurance. The paper of Boyle (1995) analyzes risk-based capital for
financial institutions with the help of the Vasicek model (1977) of stochastic
interest rates. In the light of promises of guaranteed interest rates on long-term
(life) insurance products, Deelstra & Delbaen (1995a, 1995b) use an extension of
the CIR model and study the long-term return; for a discrete-time approximation
of their model, see Deelstra & Delbaen (1998). A discussion on yield rates for pure
discount bonds with maturities of up to 100 years and their impact for evaluating
life annuities can be found in Carriere (1999). Another recent actuarial paper
which deals with long-term returns is Yao (1999). The use of the Duffie & Kan
(1996) term structure model for maximizing expected lifetime utility (subject to
budget constraints) is explained in Boyle & Yang (1997).

It is beyond the scope of this paper to give a complete overview of the vast
literature on interest rate models in actuarial sciences. Some nice surveys can be
found in the papers of Vetzal (1994), Ang & Sherris (1997) and the monographs
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of Panjer et al. (1998) and Rolski, Schmidli, Schmidt & Teugels (1999). For
further references in a general financial context, see below.

Thus an important issue in insurance and finance is to find adequate models
for the movement of the interest-rate term structure. While the irresistible
rise of arbitrage pricing theory has relegated the earliest primitive models to
their true historical position (see, for example, the article of Cox, Ingersoll &
Ross (1981)), it has not yet resulted in any one obviously “right” model for the
term structure, although there are several which, like the geometric Brownian
motion model for share prices, are good enough to be getting on with. Following
the influential papers of Vasicek (1977) and of Cox, Ingersoll & Ross (1985),
many have offered extensions and generalisations of the models presented there;
Hull & White (1990) and Jamshidian (1995) consider time-dependent versions,
and among the papers which introduce multifactor extensions of the models of
Vasicek and Cox, Ingersoll & Ross we mention Beaglehole & Tenney (1991), El
Karoui, Myneni & Viswanathan (1992), Duffie & Kan (1996), Constantinides
(1992), Richard (1978), Longstaff & Schwartz (1992), Jamshidian (1996), as well
as Cox, Ingersoll & Ross (1985) themselves. For recent surveys of some of the
various models, see e.g. the papers of Rogers (1995a) and Back (1996) as well as
the monographs of Anderson et al. (1996), Baxter & Rennie (1996), Rebonato
(1998), Duffie (1996), Lamberton & Lapeyre (1996), Musiela & Rutkowski (1997),
Bingham & Kiesel (1998), Kwok (1998).

These extensions of the simple models naturally result in a wider class
(and therefore a better fit to data), but suffer the attendant disadvantages;
computations on such models are more complicated, and one encounters problems
of overparametrisation. The principal aim of this paper is to explore to what
extent the simple, classical one-factor models of Vasicek and Cox, Ingersoll &
Ross can fit bond prices. This will be done in consistent econometric way, which
we call full maximum likelihood method (FML). This will be compared with
more crude data analysis methods. By analysing a number of datasets from the
British and US markets (which differ from those used in the literature described
in Section 1 below), we conclude that the fits are remarkably good.

The plan of the rest of the paper is as follows. A survey of previous related
empirical work as well as an outline of the proposed new econometric method
will be given in Section 1. In Section 2, we describe the data sets used, and the
analyses performed on them. Section 3 reports the results of the fits, and Section
4 contains our conclusions.
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1. An overview of previous empirical work

The econometric problems of fitting the classical models to data are considerable.
If one tries to fit the basic models of Vasicek or CIR to cross-sectional data on N
days by a full maximum likelihood fit, we end up with a maximisation over the 3
parameters (which are kept the same for each observation day) and the N values
of the short rate, which will typically be a large number of variables. Previous
econometric analyses have avoided this problem in a variety of ways.

One way is simply to ignore the issue, and fit a different model to each day’s
cross-sectional data, and this is the approach taken by Brown & Dybvig (1986),
Barone, Cuoco & Zautzik (1991), Brown & Schaefer (1994), De Munnik &
Schotman (1994) and Moriconi (1995), for example. In fact, Brown & Dybvig
use monthly data from the CRSP tape on US treasury security prices from 1952
to 1983. For each of the 373 days in the study, they separately computed the
least-squares fit to the bond prices (rather than the log bond prices we have
used). Their estimation did not constrain the parameters to be non-negative, so
they occasionally obtained negative estimates for the variance. The implied long
rates moved around substantially (whereas both the Vasicek and CIR models
predict a constant long rate and in general – see Dybvig, Ingersoll & Ross (1996)
– the long rate is a non-decreasing function of time). Brown & Schaefer (1994)
conduct a detailed and informative analysis of weekly UK Government index-
linked bonds from 1984 to 1989, which they attempt to fit with a one-factor CIR
model separately to each day’s data (again, they use the bond prices themselves).
The frequency of their data is weekly. Among the other conclusions of Brown &
Schaefer, the yield curve is very well fitted by the one-factor CIR model within
each cross-section; the function to be minimised is very flat in certain directions
in parameter space. They also find that the long end of the yield curve is much
more stable than with nominal bonds. De Munnik & Schotman (1994) obtain
similar conclusions as Brown & Schaefer, but for the Dutch Government bond
market from 1989 to 1990 (with maturities of up to 10 years). Barone, Cuoco
& Zautzik (1991) estimate the CIR model from daily data on Italian Treasury
bonds (BTP’s) from 1983-1990. They conclude that the CIR model appears to be
a good explanation of the observed variability of the bond prices. Moriconi (1995)
investigates the Italian Government securities market from 1990-1992 via the CIR
model. He observes that the corresponding one-day cross-sectional estimation
procedure produces a fairly good fit for two (namly BTP’s and BTO’s) out of
the four main classes of Italian Treasury bonds.

With these single-day fitting methods, one should then at least consider the issue
of parameter stability; for example, Brown & Schaefer find that the estimates of
the parameters are very unstable from day to day. As we shall see, this instability
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is not surprising, but does not necessarily lead us to reject the model. In contrast,
Barone, Cuoco & Zautzik (1991) conclude that their daily estimated parameters
appear to be sufficiently stable over time.

Another way to avoid the large number of variables needed for a full maximum-
likelihood fit is the approach of Gibbons & Ramaswamy (1993), who fit the
model by the generalised method of moments (GMM). While this methodology
is widely used in econometrics, it has, general speaking, some disadvantages.
The first is that the choice of functions whose sample moments are to be
estimated is essentially arbitrary, even though natural choices can commonly
be found. Secondly, the distributional properties of the estimates are only known
asymptotically. Thirdly, the validity of the GMM approach is based on an
assumption of stationarity for the underlying short-rate process. This assumption
needs to be checked in any particular application. Indeed, inspection of the graphs
of real returns on T-bills given in this paper do not suggest that this is likely.
Nevertheless, Gibbons & Ramaswamy conclude that the one-factor CIR model
does fit their short-term US T-bill data (from 1964 to 1983 with maturities 1, 3,
6, 12 months) reasonably well.

A third way to avoid the large number of variables is used by Pearson & Sun
(1994), who investigate monthly prices from 1971 to 1986 of T-Bills and notes with
maturities from 13 weeks to 10 years, taken from the abovementioned CRSP tape.
They assume that the 13-week and 26-week T-bills are observed without error,
and fit a two-factor CIR model to the data. This assumption means that once the
values of the parameters are chosen, the values of the two stochastic factors can
be computed from the 13-week and 26-week yields, so that the minimisation takes
place over just the parameters of the model. One disadvantage of this approach
is that it will be impossible to guarantee that the stochastic factors implied by
the 13-week and 26-week yields will remain non-negative (as they must be in this
model), and indeed Pearson & Sun reject the model largely on these grounds.

Let us also mention two other econometric analyses here, although their aims are
quite different from those of the present study. Stambaugh (1988) analyses excess
returns in terms of predictors based on today’s yield curve, and finds that two or
three factors are needed for satisfactory prediction. Chan, Karolyi, Longstaff &
Sanders (1992) compare a large family of parametric models including the Vasicek
and CIR model, and find evidence to prefer a different dependence of volatility
on the level of interest rates. In more detail, Chan et. al investigate diffusion
models for the spot-rate process of the form

drt = σrγt dWt + (α + βrt)dt .

They discretize this stochastic differential equation in order to obtain a time series
for rt, and use the Generalized Method of Moments to estimate the parameters
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directly from this time series (rather than from cross-sectional data). They find
that a model with γ = 1.50 fits the time series better than Vasicek or CIR.
There are two points with the analysis conducted in this paper which from a
theoretical point of view could turn out to be a little problematic. The first is
that the asymptotics of the GMM estimators are only justified on the assumption
that the underlying process is stationary and ergodic, and this can only happen
if {γ = 1/2, 2α > σ2, β < 0}, or {1/2 < γ < 1, α > 0, β ≤ 0}, or
{γ = 1, α > 0, 2β/σ2 < 1}, or {γ > 1, α = 0, β > 0}, or {γ > 1, α > 0}. The
best estimated models in Chan et al. turn out to be ergodic except for the CIR
VR model (which corresponds to the case {γ = 1.5, α = 0, β = 0}). The second
point concerns the data, which is monthly data on one-month T-Bill yields from
the CRSP tapes. Quite apart from the question of whether the one-month T-Bill
is a good proxy for r, the gap between observations may be too large to be able to
pick up the volatility adequately. For example, if the mean-reversion parameter
β were moderately large, and if rt were also quite large compared to α/β, then
rt+1 would have been pulled back in towards α/β, and so rt+1−rt would be quite
large (and negative); if rt were small, then rt+1 is not going to be much bigger
than rt, so rt+1 − rt would be fairly small. The net effect is that the large inter-
observation gap together with mean reversion would produce an effect similar to
a value of γ > 1, especially if one crudely discretises the abovementioned SDE,
as Chan et al. do. Accordingly, it seems that the conclusions drawn by Chan et
al. should be investigated with a further more penetrating analysis.

It is beyond the scope of this paper to give a complete overview of the literature
which deals with the implementation of the Vasicek and the CIR models; for
further works, see the papers and books mentioned in Section 1 and the references
therein.

What we propose in this paper is to carry out a full maximum likelihood fit
(FML) of the one-factor Vasicek and CIR models to each of four bundles of
cross-sectional data sets. To our knowledge, this is the first time that such an
analysis has been carried out; since the models of Vasicek and CIR are intrinsically
time-homogeneous, this is the only wholly consistent way to fit. For comparison
purposes, we shall also perform other fits, which are detailed below. We find
that by restricting the parameters of the model to be the same every day (while
allowing the short rate to change) the fit is (of course) worsened, but that the
goodness of fit is comparable to that obtained by allowing different parameters
to be fitted each day. More precisely, if we fit a different one-factor model to each
day’s data, we get an average error of 2–3 basis points for each fitted yield, but
if we demand that the model does not change from day to day, the average error
gets increased by a factor of 2–3. Since the yield curve may be estimated from
the prices of coupon-bearing bonds quoted to the nearest 1/32 out of 100 GBP,
the errors inherent in the data will be of the order of a few basis points. Thus

6



any model which could fit the data to within 4 basis points most of the time is
doing reasonably well. The simple-minded one-factor models can achieve such a
good fit, and what is of interest is that restricting the parameters to be constant
does not make the fit much worse.

2. Datasets and analyses

Let (rt)t∈IR+ denote the short rate process (i.e., the process of the instantaneous
rate of interest), and let P (t, T ) denote the price at time t of a (zero-coupon)
bond which delivers 1 with certainty at later time T ; arbitrage pricing theory
tells us that

P (t, T ) = Et

[
exp

(
−
∫ T

t
rudu

)]
,

where Et denotes conditional expectation with respect to a risk-neutral measure,
given all information available at time t. To fix our terminology, we shall define
the return R(t, T ) at time t on the zero-coupon bond which matures at T > t by

R(t, T ) ≡ − logP (t, T ),

and the yield to be
Y (t, T ) ≡ R(t, T )/(T − t).

The yield curve at time t is the function τ 7→ Y (t, t+ τ) defined for all τ > 0.

The datasets used (which we shall refer to by the letters introduced here) were
the following:

(A) The New York money-market rates reported in the Financial Times for
the period 3rd May 1993 to 26th May 1993 were recorded. The range of
maturities used was 1 month, 2 months, 3 months, 6 months, 1 year, 2
years, 3 years, 5 years, 7 years, 10 years. [The data in the Financial Times

was quoted in terms of the yields Y (ti, ti + τj), to the nearest basis point.]

(B) The New York money-market rates reported in the Financial Times, taking
one day per month for the period January 1991 to February 1993. The day
chosen was the second Tuesday of the month in order to avoid ”weekend
and beginning of the month” effects.

(C) The yields for maturities 1 month, 3 months, 6 months, 1 year, 2 years, 3
years, 4 years, 5 years, 7 years and 10 years on each trading day ti from
24th December 1992 to 25th May 1993 were extracted from data on British
interest rates kindly supplied to us by Simon Babbs. These yields were
estimated from the prices of (coupon bearing ) UK government bonds.
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(D) This dataset was from the same source as (C), but relates to US interest
rates. We extracted the same maturities for the same days.

All the datasets have the structure of a rectangular array (Rj
i )i=1,...,N, j=1,...,M of

returns, where N denotes the number of days on which returns were recorded,
and M denotes the number of maturities recorded each day. We write Ri for the
vector (Rj

i )
M
j=1 which is usually referred to as the cross-section (of returns, in our

context) observed on day ti. Thus, we deal with N cross-sections. The analyses
performed on each dataset were the following.

Analysis I Considering R1, ..., RN as a sample from some multivariate normal
distribution, the sample covariance matrix was computed as a first crude attempt
to understand the data.

As part of this analysis, the structure of the eigenspaces was investigated in the
following way: there is a natural basis for IRM in the context of cross-sections,
namely the vectors u1, ..., uM for which the j-th coordinate is given by

uj
i = (τj)

i−1 (j = 1, ...,M)

where the τj are the maturities. If Vk is the subspace spanned by u1, ..., uk,
then the eigenvectors can be projected onto the subspaces V1, V2, ... in order to
understand the structure of the sample covariance matrix. This method differs
from that of Dybvig, who does a principal components analysis of the changes in
returns.

Analysis II For each cross-section, e.g. at day ti, we fitted the model
R̃j

i (ω) = aτj + b(1 − e−γτj ) + εij(ω) to the observations Rj
i , where the εij are

independent, N(0, 1) distributed random variables. This amounts to solving the
problem

min
a,b,γ

M∑

j=1

(Rj
i − aτj − b(1− e−γτj ))2,

keeping a and γ non-negative. This is not perhaps as arbitrary as might at first
sight appear; this is exactly the form of returns which one obtains if one takes
the Vasicek (or CIR) model with σ = 0.

Before we describe further analyses, let us first give a quick review of the
underlying theory. The simple one-factor models of Vasicek and Cox, Ingersoll
and Ross define the short-rate process r as the solution of a stochastic differential
equation

drt = σ (rt)
θ dWt + (α− β ′rt) dt (2.0)
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under the real-world (probability) measure Q′, where α, β ′, σ are non-negative
constants (the parameters of the model) and the power θ = 0 in the Vasicek
model, θ = 1/2 in the CIR model. It is widely accepted that nominal interest
rates should never be negative, and therefore a model (such as the Vasicek model)
which allows rates to go negative is not valid. Such models are widely used in
practice because of their tractability, and therefore we have included it in the
study. Rogers (1996) investigates some of the possible snags which can arise, but
we shall ignore them here; such a Gaussian model is usually an adequate first
attempt.

It is well known that in arbitrage-free pricing system there is a measure Q (called
the risk-neutral measure) which is equivalent to the real-world measure Q′ such
that the zero coupon bond prices can be expressed as

P (t, T ) := EQt

[
exp

(
−
∫ T

t
rudu

)]
, (2.1)

where EQt denotes the conditional expectation with respect to the risk-neutral
measure Q, given all information available at time t. For simplicity, in this paper
we only consider measures

Q := Z0,T ∗ ∗ Q′

having density

Z0,T ∗ := exp

( ∫ T ∗

0
λu dWu −

1

2

∫ T ∗

0
λu du

)

with respect to Q′, where the function λ (called market price of risk, see below)
has the following particular form:

λu :=
(β ′ − β) ru

σ
, β > 0, in the V asicek model,

λu :=
(β ′ − β) ru

σ
√
ru

=
(β ′ − β)

√
ru

σ
, β > 0, in the CIR model.

Here, T ∗ denotes the maximum maturity at the last day of the observation period.

By the well-known Girsanov theorem (see e.g. the original articles of Girsanov
(1960) and Maruyama (1954, 1955); further explanatory material can be found
e.g. in the books of Liptser & Shiryayev (1977), Rogers & Williams (1987),
Karatzas & Shreve (1991) and e.g. in the papers of Stummer (1990, 1993, 1999))
one gets the dynamics of the short rate process rt under the risk neutral measure
Q:

drt = σ (rt)
θ dWt + (α− βrt) dt (2.2)
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with Wt := Wt − ∫ t
0 λu du, which is a Brownian motion under Q. The power

θ remains the same as in (2.0).

Remark: Notice that, in both the CIR and Vasicek models, the solution laws
Q of (2.0) and Q′ of (2.2), which correspond to different values of β, are locally
equivalent. The same is true in the Vasicek model (i.e. θ = 0) if we would also
use α′ (rather than α) in (2.0); the corresponding market price of risk would be

λu :=
(
(α′ − α) − (β ′ − β) ru

)
/σ. However, in the CIR model (i.e. θ = 1/2),

if one uses (2.0) with α′, then one still gets a (unique strong) solution measure

Q′ of (2.0), but it is, in general, not locally equivalent to the (unique strong)
solution measure Q of (2.2) anymore. The reason is related to the discussion in
Section 5 of Cox, Ingersoll & Ross (1985), which in turn hinges on properties of
squared Bessel processes. To explain more fully, if one restricts the dimension
(defined to be 4α/σ2) of the BESQ processes to be always at least 2, then for a
starting short rate level r0 > 0 the laws of the process for different dimension are
locally equivalent. Indeed, as is presented in Exercise 1.22 on p. 419 of Revuz
& Yor (1991), there is a simple expression for the density martingale. However,
for starting short rate level r0 = 0, the laws for different dimension are mutually
singular; the escape rates from the short rate level 0 are different. If the dimension
is allowed to fall below 0, the short rate level 0 becomes accessible for the process
rt, and so the laws cannot be locally equivalent.

For simplicity, we have kept the parameter α the same in (2.0) and (2.2) (in both
the Vasicek and CIR contexts).

From (2.1) and (2.2) one gets the following explicit formulae for the return under
the risk-neutral measure Q:

R(t, T ) = rt B(T − t) + A(T − t) , (0 ≤ t ≤ T ),

where in the case of the Vasicek model

A(τ) =

(
α

β
− σ2

2β2

)
τ − α

β2
(1− e−βτ ) +

σ2

4β3
(3− 4e−βτ + e−2βτ ) ,

B(τ) = (1− e−βτ )/β ,

and in the case of the CIR model

A(τ) = − 2α

σ2
log

(
γ eβτ/2

γ cosh γτ + 1
2
β sinh γτ

)
,
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B(τ) =
sinh γτ

γ cosh γτ + 1
2
β sinh γτ

,

with γ ≡ 1
2

√
β2 + 2σ2.

From this, one can immediately see two reasons why the Vasicek and CIR models
are nice: the return has an explicit formula, and it is an affine function of the
short rate.

Another feature of the Vasicek and CIR models is that the long rate
limT→∞

1
T
R(0, T ) exists under the risk-neutral measure Q and is equal to

α

β
− σ2

2β2
in the V asicek model,

2α

β + 2γ
in the CIR model,

a constant in each case.

After this preparatory excursion in term structure theory, let us now describe
further analyses:

Analysis III The next procedure we used was to fit the Vasicek and CIR models
day by day to the cross-section of returns; that is, we solved for each i = 1, ..., N
the problem

min
α, β, σ2, r

M∑

j=1

(Rj
i −A(τj)− rB(τj))

2,

keeping α, β and σ2 non-negative (and the short rate r also non-negative in the
CIR case). Hence, for every day i we obtain different estimates.

Analysis IV This was a least-squares fit of the two models to all N cross-
sections of returns, keeping the parameters α, β and σ the same for all observation
days; we solved

min
α, β, σ2, ri

N∑

i=1

M∑

j=1

(Rj
i −A(τj)− riB(τj))

2,

keeping α, β and σ2 non-negative (and ri also non-negative in the CIR case).

Let us now explain the FML method which was already mentioned above:
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Analysis V We performed a full maximum-likelihood fit to all N cross-sections.
To describe this, we model the observed returns by

Rj
i = A(τj) + r(ti)B(τj) + εij,

where the εij are independent N(0, v) random variables. If pt(·, ·) denotes the
transition density of the diffusion (which depends implicitly on the parameters
α, β ′ and σ), we solved the problem

max
α, β, β′, σ2, v, ri

N∑

i=2

log pδ(ri−1, ri)−1
2

N∑

i=1

M∑

j=1

{log v + (Rj
i − A(τj)− riB(τj))

2/v}

where δ is the spacing between times of observation. Note that the mean reversion
parameter of the diffusion is not assumed to be the same β as appears in the bond
price formula, since that relates to the risk-neutral measure, and the β ′ of the
actual diffusion of the short rate in the real-world measure may be different.

Analysis VI In Analyses III and IV, there appeared to be considerable
indeterminacy in the best parameters. As we shall explain, this was essentially to
be expected; however, we investigated this further by considering what happened
when we reduced the number of parameters by one, by fixing a value for the
long rate, and then carrying out Analysis IV. The results helped to reconcile the
models of Brennan & Schwartz (1979) and Schaefer & Schwartz (1987) with the
result of Dybvig, Ingersoll & Ross (1996) that the long rate is a non-decreasing
process.

Analysis VII One-factor models imply that the changes in returns of zero-
coupon bonds of different maturities are instantaneously perfectly correlated.
For the Vasicek and CIR models, we even have that if one forms

δji ≡ Rj
i+1 − Rj

i , i = 1, ..., N − 1, j = 1, ...M,

then δji = (ri+1−ri)B(τj). Of course such a phenomenon cannot occur in practice,
but if one allowed for the possibility that the observed changes were modelled
instead as

δji = wiuj + εij (0.1)

where the εij are independent N(0, v) and w, u are two vectors, we computed the
likelihood-ratio test statistic for testing this hypothesis against a more general
hypothesis on δji . More simply, we investigated the signs of the δji ; if the one-
factor Vasicek or CIR models were true, then even with some quantisation of the
observations one should have that for each i either δji ≥ 0 for all j or δji ≤ 0 for
all j.
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3. Results of the analyses

(I) The results are presented in Table 1. The columns record (respectively) the
label of the data set, the ratio of the eigenvalue to the largest eigenvalue, and the
squared length of the eigenvector accounted for by projection into the subspaces
V1, V2, V3 defined in Section 2. The rows relate to the three eigenvectors of largest
eigenvalue.

The overwhelming conclusions from this are that (i) the sample covariance matrix

is almost of rank 1 (the top eigenvalue is always much larger than all the others);
(ii) the jth eigenvector is largely made up of its projection into Vj, but not into
Vj−1. In words, this means that the displacements of the Ri from the mean value

R̄ are mainly due to adding a constant to the yield curve, a little due to adding a

linear function to the yield curve, and even less to addition of a quadratic function

to the yield curve. This is consistent with the findings of Dybvig (1997) based on
the CRSP data.

(II) The residual sum of squares was typically of the order of ?????????
quote in terms of bp per maturity ??????????? 10−5 for each day (the
outcomes for datasets A-D are summarised in box-and-whisker plots in Figure
1. Any observation which exceeds the 75-percentile by more than 1.5 times the
interquartile range is marked separately.) This corresponds to an average daily
error in each fitted yield of around 2–4 basis points. It is remarkable that the
quality of fit in this deterministic case is almost as good as in the day-by-day fits
of Analysis III.

Bearing in mind bid-ask spreads, and the fact that most parts of the yield curve
have to be deduced from the prices of coupon-bearing bonds (which might be
quoted to the nearest 1/32 of a pound in a price of about £100), there is an
intrinsic measurement error of the order of 3–4 basis points.

The estimate of a corresponds to the long rate, and for each of the datasets this
varied little from day to day. The estimates of b were always negative.

(III) As with Analysis II, we present in Figure 1 box-and-whisker plots of the
residual sums-of-squares from fitting the CIR and Vasicek models to datasets
A-D. Notice the improvement in the quality of the fit in each case, usually more
pronounced for Vasicek than for CIR. Table 2 also summarizes the fits of III,
giving the average daily errors (in bp). The Analysis IV and V errors are given
for comparison.

In this instance, the estimated values of the parameters are meaningful, and we
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display in Figure 2 on common axes the daily estimates of r from the CIR and
Vasicek models, for datasets A-D. While the estimates look broadly similar, it is
not uncommon for them to differ by 30 basis points on any particular day. There
appears to be no consistent sign for the difference in the estimates for the two
models.

Information on the fluctuations in the three parameter estimates α̂, β̂, and σ̂2

from day to day is summarised in Table 3, with the estimates from Analysis
IV given for comparison. In most cases, the interquartile range from Analysis
III covers the estimate from Analysis IV, though often the range is quite large,
underlining the instability of parameter estimates. The parameter instability in
Analysis III is consistent with e.g. the abovementioned findings of Brown &
Schaefer (1994) on index-linked bonds.

We also display, in Figure 3, the implied long rates calculated from the estimated
values of α, β, σ in each of the two models, for each of the datasets A-D. What
is striking is the relative stability of th estimated long-rate in the CIR model
compared with the estimated long-rate in the Vasicek model; commonly, the
estimates in the latter were negative (which is manifestly absurd!), and frequently
enormously negative. In Figure 3, any negative estimate below −68% is marked
by a ”Z” and not joined to the rest of the graph. Long rates as low as −109%
were obtained !

(IV) The box-and-whisker plots in Figure 1 show that the quality of fit for dataset
A (May 1993) is scarcely affected, and the Vasicek model fits better than CIR.
For datasets B-D, the fit is considerably worse. This suggests that a fixed model
is not explaining the term structure on a longer time-scale so well as on a shorter
one, which seems reasonable; the remarkable thing is that it is still comparable,
bearing in mind that in Analysis III we have 3(D − 1) more parameters, where
D is the number of days being fitted! This is explained by the results of Analysis
I; we have seen that in each of the data sets

Ri
.
= R̄ + εiv1 + ε′iv2 + ε′′i v3

where εi ≫ ε′i ≫ ε′′i and v1, v2 and v3 are the top three eigenvectors of the sample
covariance matrix. Also, v1 corresponds to a parallel shift of the yield curve. So
if we could choose parameters α, β, σ2 such that for some θ

R̄ ≈ (A(τj ;α, β, σ
2) + θB(τj ; β, σ

2))mj=1 and v1 ≈ (B(τj ; β, σ
2))mj=1,

then the returns over many days can be well fitted by the same model.

When using the least-squares fitting algorithm, we printed out the current
values of the variables and the objective function every 5 or 10 calls to the
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function. Convergence happened quite quickly (generally more quickly for the
larger datasets), and in all except dataset C, the estimate of β in the CIR model
appeared to be converging to zero. It was noticeable that towards the end of the
optimisation procedure, the value of the objective function changed very little,
though the values of the parameter may have been changing substantially; this
is to be expected, because near the minimum the derivative is almost zero.

We show in Figure 4 the best estimated values of ri for the Vasicek and CIR
models, plotted on the same axes as Figure 2. Figures 2 and 4 are broadly
similar, but also plainly different. This is not surprising in view of the evidence
in Figure 1 for the poorer fit of Analysis IV compared to Analysis III. Figures 5
and 6 demonstrate clearly how good “poorer” is in this context; we have plotted
the theoretical curve for − logP (0, τ) and marked on the observed values also.
The day chosen was one where the residual sum of squares for both models was
(slightly above) average. The closeness of both fits is remarkable.

The three parameter estimates α̂, β̂, and σ̂2, which by construction are held
constant for each data set, are shown in Table 3.

(V) Analysis V was performed on data sets A, B, C, D, and the results are
summarised in Tables 2 and 4. As is clear from the last two columns of Table
2, including the transition density in the fit made a negligible difference to the
residual sum-of-squares. Therefore, the Figures 1, 4, 5, 6 and 7 look (nearly
100%) the same in the case of Analysis V (instead of IV).

(VI) By fixing the value of the long rate, and then carrying out Analysis IV, we
obtained useful information on the stability of estimated long rates. As the graphs
in Figure 7 show, it was possible for quite different values of long rate to give
very similar values of residual sums-of-squares, and this was more pronounced for
the Vasicek model. This empirical fact saves the models of Brennan & Schwartz
(1979), and of Schaefer & Schwartz (1987), from the theoretical objection of the
result of Dybvig, Ingersoll & Ross (1996) that the long-rate is non-decreasing;
this may be so, but the degree of uncertainty in the estimates of the long rate is
found empirically to be so great that modelling the long rate (or a proxy) as a
diffusion is by no means rediculous.

(VII) As is explained in the Appendix, the minimal value of tr (X−Y )(X−Y )T

over rank–r N ×M matrices Y is the sum of the r smallest eigenvalues of XTX .
Thus the form of the LR test statistic of H0 : X is rank r against H1 : X is rank
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r + 1 would be

Lr = NM log




M∑

i=r+1

λi/
M∑

j=r+2

λj


 .

and for each r this was found to be much larger than the number of degrees of
freedom (N +M − 2r − 1), suggesting that no finite-rank restriction applies.

By considering the signs of Rj
i+1−Rj

i , one has a way to test the one-factor Vasicek

and CIR models; for each i, we counted the number of j for which Rj
i+1−Rj

i ≥ 0,
which would always be either 0 or 10 if the model was exactly true. For each of
the datasets A–D, on at least half of the days the count lay in between 0 and 10.

4. Summary and discussion

We summarise here the main results of this investigation (listed without order of
importance):

(i) The measurement error in the quoted yields was of the order of 1–3 basis
points. A day-by-day fit gave errors of the order of 2–3 basis points, whereas
fitting with the same model for all days resulted in errors of the order of 3–8
basis points per yield. Thus, restricting the parameters to be constant does not
make the fit essentially worse.

(ii) Throughout all (relevant) analyses, the quality of fit is nearly as good for the
CIR model as for the Vasicek; stability of long rates (in the case of Analysis III)
was much better. So it seems one loses little, and gains non-negativity of short
rates, by using the CIR model.

(iii) The less involved method IV is closely as good as the theoretically clean,
more involved full maximum-likelihood estimation (FML): There is almost no
difference in the quality of the fit.

(iv) Substantially different values of long rate (if fixed) can lead to very similar
values of residual sums-of-squares; the Vasicek model estimates show this effect
much more extremely than those of the CIR model.

(v) Daily changes in the estimates of r were typically around 5–10 basis points,
sometimes 15–20; this is comparable with the error of the fit. We found that the
single-factor Vasicek and CIR models did not explain changes in log bond prices,
and this is the reason.

(vi) The co-movement of different yields which is predicted by the one-factor
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models does not happen in practice.

(vii) The movements of the yield curve are largely explained by parallel
displacements of the entire curve, with the addition of linear perturbations
playing a smaller rôle, and quadratic and higher-order perturbations being only
faintly present. Thus the vector Ri = (R(ti, ti + τj))

M
j=1 essentially lies in a

subspace of dimension at most 3.

From (i) and (vii), it is clear that the one-factor models are often not in themselves
good enough to fit the data to within observational error, though if we were to
go to two- or three-factors we should have a chance to fit the data well (note,
however, that with three factors, we are beginning to have more parameters than
data points.) The worsened fit when we insist on the same parameters for the data
set rules out these simple one-factor models; allowing the parameters to change
slowly from day to day (as in Rogers & Zane (1997), for example) one might be
more successful, but since the fit of Analysis III is already not particularly good,
it is not worth trying in this framework. The complete failure of the models to
explain co-movements of different yields means that they could not be used for
any option on spreads, for example.

Let us finally mention some possible future refinements of the methods which
were used in this paper (for the sake of brevity, this is not complete):

One suggestion is to take a time-varying version of the basic model, as is done
by Hull & White (1990). This has the virtue of allowing an exact fit to the yield
curve on any given day, by choosing α to be a deterministic function of time.
In terms of (αt)t≥0, β, σ, the zero-coupon bond prices for the Vasicek model are
given by

− logP (t, T ) = rt
1− e−βτ

β
− σ2

4β3

[
2βτ − 3 + 4e−βτ − e−2βτ

]

+
∫ T

t
du
∫ u

t
ds e−β(u−s)αs, (0.2)

where τ ≡ T − t ≥ 0; see, for example, Section 2 of Rogers (1995a). From this,
we see that 0 < t < τ , the change in the maturity–τ log bond price from time 0
to time t is

− logP (t, t+τ)+logP (0, τ) = (rt−r0)
1− e−βτ

β
+
∫ τ

0
du
∫ u

0
ds e−β(u−s)(αt+s−αs)

which does not necessarily have the same sign at all points of the yield curve.
Thus the feature of the Vasicek and CIR models which was addressed in Analysis
VII is not a problem for the time-dependent version of the model.
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For such time-dependent versions of Vasicek and CIR, the volatility of the yield of
maturity τ is always decreasing with τ , which is not invariably observed in data;
indeed, a humped term-structure of volatility seems more common as activity in
very short-dated loans is small.

As a point of modelling style, it seems preferable to try representing α as

α(t) =
K∑

i=1

aie
−λit, (0.3)

because then if we fit the yield curve again tomorrow, it is possible that the model
we obtain will be exactly the same as today’s, which would not be possible if we
took (for example) α to be piecewise constant.

Another extension of the basic models is to consider multi-factor generalisations,
as has been done by Longstaff & Schwartz (1992), Duffie & Kan (1996), Pearson
& Sun (1994), Rogers & Zane (1997) among many others. The fits obtained are
of course much better and are typically of the order of the observational error.

Apart from different modelling assumptions, there is scope for improved fitting
if one fits to better data. The yield curve data is typically already derived, i.e.
extracted from coupon bond prices; except for a some cases (e.g. US Treasury
strips), one does not have direct evidence for the prices of zero-coupon bonds.
If one used the prices of liquid interest-rate derivatives for the fitting procedure,
then one would expect that data to be more reliable, and the whole estimation
procedure would be a lot cleaner. In fact, pricing and calibration are very closely
linked; a subroutine which prices a particular derivative within a particular model
can be used either as part of a fitting procedure, or else can be used to give a
price once the model has been fitted.

Another area where much remains to be done is in the analysis of term-structure
models in many countries at once. The theory of this turns out to be surprisingly
simple if viewed in the correct way (see Rogers (1995b)), and fitting investigations
by Rogers & Zane (1997) are encouraging.
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Appendix

The test described in Analysis VI rests on the following attractive result. Though
this must appear in print somewhere, the proof is not long, so we include it for
completeness.

PROPOSITION 1 Let X be an N × M matrix, N ≥ M , and let λ1 ≥ λ2 ≥
... ≥ λM ≥ 0 be the eigenvalues of XTX. Then for 1 ≤ r ≤ M

min{tr(X − AB)(X −AB)T : A is N × r, B is r ×M}

=
M∑

i=r+1

λi.

Proof. Firstly, observe that the minimum is not changed if we replace X by RXS
for any R ∈ O(N), S ∈ O(M), where O(N) denotes the set of all orthogonal
N × N matrices; so we may assume that both XTX and XXT are diagonal
non-negative definite. Thus we shall have

XTX = Λ ≡ diag(λ1, ..., λM).

Moreover, if for any rectangular matrix Z we have ZZTv = λv, with λ 6= 0,
v 6= 0, then (ZTZ)ZTv = λZTv, so λ is also an eigenvalue of ZTZ. Hence we see
that

XXT =

(
Λ 0
0 0

)

(at least after suitably interchanging rows of X). Now suppose that the minimum
is attained at A = A∗, B = B∗. By considering a perturbation A∗ + Y for small
Y , we see that

B∗(X −A∗B∗)
T = 0

and similarly that
AT

∗ (X − A∗B∗) = 0.

Notice that for any invertible r × r matrix U, (A∗U, U−1B∗) will also minimise
the objective function, so we shall suppose U chosen to make UTAT

∗A∗U = I and
write A∗ in place of A∗U . So we have

(X −A∗B∗)B
T
∗ = 0

AT
∗ (X −A∗B∗) = 0

from which B∗ = AT
∗X , and

tr(X − A∗B∗)(X −A∗B∗)
T = tr(I − A∗A

T
∗ )XXT (I − A∗A

T
∗ ).
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Thus, since P = I −A∗A
T
∗ is an orthogonal projection, of rank N − r, we are led

to consider the problem

min{trPXXTP : P is N ×N, rank N − r orthogonal projection}
= min{trPXXT : P is N ×N, rank N − r orthogonal projection}.

Now XXT is a diagonal matrix, so we are attempting to minimise

N∑

i=1

λipii

(where λj = 0 for M < j ≤ N) with P any rank N − r orthogonal projection.
However, note that P = P 2 = PP T = P TP , so 1 ≥ pii ≥ 0 for all i, and∑

pii = N − r, so the minimum must be at least
∑N

i=r+1 λi. This lower bound
can be achieved by taking

A∗ =

(
Ir
0

)

and B∗ = AT
∗X .
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Table 1. Structure of the eigenspaces in Analysis I

Data e-value ratio |P1x|2 |P2x|2 |P3x|2
1.00000 0.977 0.992 0.993

A 0.00854 0.012 0.796 0.835
0.00433 0.010 0.114 0.694
1.00000 0.968 0.999 1.000

B 0.00505 0.027 0.753 0.944
0.00119 0.004 0.237 0.774
1.00000 0.979 0.998 1.000

C 0.00834 0.021 0.937 0.999
0.00076 0.000 0.052 0.812
1.00000 0.981 0.998 1.000

D 0.00944 0.019 0.901 0.994
0.00040 0.000 0.094 0.813
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Table 2. Comparison of quality of fit for Analyses III, IV
and V via average daily errors

Dataset Model Average daily error (in bp)
Analysis III Analysis IV Analysis V

A CIR 2.86 3.33 3.33
A V 1.84 2.49 2.49
B CIR 2.76 6.71 6.71
B V 2.38 6.08 6.08
C CIR 3.49 8.51 8.54
C V 3.17 8.62 8.65
D CIR 1.96 6.86 6.87
D V 1.07 3.68 3.68
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Table 3. Fluctuations of Analysis III – parameter estimates, compared with Analysis IV – parameter

CIR VAS
Analysis III Analysis IV Analysis III

Dataset Parameter 1st quart Median 3rd quart 1st quart Median 3rd quart
A α̂ 0.0150 0.0154 0.0159 0.0150 0.0139 0.0150 0.0160

A β̂ 0.0000 0.0000 0.0000 0.0000 0.0299 0.0463 0.0624
A σ̂2 0.0918 0.0966 0.1067 0.0929 0.0019 0.0022 0.0025
B α̂ 0.0132 0.0163 0.0212 0.0140 0.0146 0.0214 0.0259

B β̂ 0.0000 0.0000 0.0000 0.0000 0.0476 0.1058 0.1621
B σ̂2 0.0501 0.0834 0.1435 0.0619 0.0021 0.0035 0.0049
C α̂ 0.0092 0.0100 0.0113 0.0124 0.0101 0.0152 0.0195

C β̂ 0.0000 0.0000 0.0000 0.0289 0.0000 0.0693 0.1469
C σ̂2 0.0212 0.0266 0.0308 0.0303 0.0011 0.0013 0.0022
D α̂ 0.0157 0.0168 0.0194 0.0133 0.0155 0.0192 0.0252

D β̂ 0.0000 0.0000 0.0000 0.0000 0.0426 0.1185 0.1415
D σ̂2 0.0899 0.1050 0.1290 0.0613 0.0023 0.0028 0.0047
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Table 4. Analysis V – parameter estimates

Dataset Model α̂ β̂ β̂ ′ σ̂2 v̂ × 106

A CIR 0.0149 0.0000 0.0000 0.0919 2.09
A V 0.0156 0.0550 0.8031 0.0024 1.17
B CIR 0.0139 0.0000 0.6579 0.0607 8.49
B V 0.0252 0.1636 2.2137 0.0044 6.97
C CIR 0.0113 0.0187 0.3678 0.0273 14.89
C V 0.0176 0.1136 0.8341 0.0018 15.29
D CIR 0.0131 0.0000 1.1060 0.0590 9.63
D V 0.0158 0.0434 2.4184 0.0024 2.76
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