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1 Introduction.
The short answer to the question of the title is that the solution to the problem

min{é +aa:2} (1)

z>0 |

5\ 173
r=|— ,
(%)

which results in the minimised value of

is to take

3al/3(5/2)%/3.

But why is this relevant? To set the scene, we shall be discussing the classical
problem of proportional transaction costs, derived from the optimal consumption
problem of Merton and set forth in Constantinides (1986), Davis & Norman (1990),
and various other references; see Cadenillas (1999) for a recent survey of work on
transaction costs problems. In this problem, an agent invests in two assets, a risky
share and a riskless bank account, and consumes from the bank account so as to max-
imise his expected discounted utility of consumption, where the utility has constant
relative risk aversion. Moves of wealth between the two assets incur a proportional
cost 0.

The solution obtained by Davis & Norman (1990) is that there is a closed interval
I = I, such that while the proportion of wealth p in the share remains in I, the agent
makes no transactions, but when the proportion reaches the ends of the interval,
then just enough trading takes place to stay within 7,. The proportion of wealth in
the share obeys an autonomous SDE, and so is a diffusion. Now the optimal solution
to the problem represents a balancing of two effects; on the one hand, making I large
reduces the amount of transacting required (and therefore reduces the transaction
costs), but on the other hand, by making I large we allow the proportion invested
in the share to wander a long way from the optimal value, and so we lose because
the portfolio is not appreciating as rapidly as it might.

Proceeding very informally, if we constrain p to some interval I of length x, then the
proportional loss per unit time due to transaction costs will be ¢ times the average
increase of the local time at the ends of the interval I for the diffusion p; we expect
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this to be of the order of d/x, which is exactly what we would get if the invariant
distribution of p were uniform (as would be the case with Brownian motion). The
proportional loss per unit time due to suboptimal portfolio composition will be of
the order of 22, assuming that I contains the optimal (Merton) proportion 7. This
becomes clear if we consider the (zero-transaction-costs) Merton problem, where the
agent chooses to keep a fixed proportion 7 of wealth in the risky asset at all times,
and will consume at a rate proportional to wealth, the constant of proportionality
being chosen optimally given the value of . The payoff to the agent is a smooth
concave function of 7, with a unique maximum at = = 7,. Assuming that w, € I -
which seems a natural condition - the reduction in the payoff if we used 7 in place
of m, must be to leading order proportional to (m — m,)? - Taylor’s theorem! This
justifies (weakly) our assertion concerning the losses due to suboptimal portfolio
composition. Putting these two effects together gives (1).

The result of this article is not new; Shreve (1995) uses estimates on viscosity so-
lutions to derive (for the case where the coeffiecient of relative risk aversion is in
(0,1)) the order of magnitude we shall demonstrate, and Fleming, Grossman, Vila
& Zariphopoulou (1990) in a somewhat different context obtain the same asymp-
totic. Thus we should view the current paper as primarily pedagogical in purpose;
we shall obtain the bounds we need in the next section using little more than a ju-
dicious application of stochastic calculus. As befits a pedagogical approach, we will
make various simplifying assumptions of an inessential nature which avoid tedious
complications. In the end, we find an expression bounding the loss to leading order,
which we conjecture is exact.

2 Bounds on the payoff.

We shall be considering the dynamics of the pair (x;,y;) in the form

dl't = (T.’Et - Ct)dt + (1 - (S)th — st (2)
where x; is the value of the agent’s holding in the riskless asset (bank account),
bearing interest at constant rate r, and y; is the value of the agent’s holding in
the risky asset (share). The increasing processes L (respectively, M) measure the
cumulative amounts of money moved from bank account to share (respectively, from
share to bank account), and the agent’s problem is to choose these, along with the

non-negative consumption process c is such a way as to keep the pair (z,y) always
in the solvency region

S={(z,y):x+(1-90)y>0,y+(1—-0)z > 0},
while at the same time maximising the payoff
(c, L, M;z,y) = E[/ e~PU(cy)dt]xo = x,90 = y|. (4)
0

2



The parameters o, p, 6 and p are all constant, and are strictly positive (except for
1)-

We shall assume that the utility function U has constant relative risk aversion:

B PRES

1-R

U(x)

for some R > 0 different from 1. This assumption simplifies the solution consider-
ably: defining the value function

it is easy to show that for any positive A
V(Az, \y) = ARV (z,y),

which thereby reduces the problem to one dimension. The solution of Davis &
Norman (1990) is in terms of an interval I, = [r_, 7] such that while the proportion
Pt = yi/ (x4+y:) of wealth in the share remains in I, the agent makes no transactions,
but when the proportion reaches the ends of the interval, then just enough trading
takes place to keep p within I,. No explicit expression can be found for the values
7w_, my. The optimal (Merton) proportion

m=tT (5)

is often in the interval I,, but examples can be constructed where it is not; see
Shreve & Soner (1994).

The description of the optimal consumption process is not quite so simple; all one
can say is that the optimal ¢ is of the form

c; = wig(py),

and Davis & Norman give a characterisation the function g. In his paper, Con-
stantinides (1986) restricted attention to policies where the function g was assumed
constant, and thereby derived lower bounds for the value. Although this assumption
is substantive, it allowed him to deduce many of the key features of the solution,
and to bound the size of the transaction cost effects, which he found to be be quite
small.

We shall follow Constantinides in assuming that the consumption process is of the
form ¢; = ~yw; for some constant v, so that the wealth process w; = z; + y; now
satisfies the dynamics

dwy = (r — v)widt + pywy(cdWy + (i — r)dt) — 6d A, (6)



Here, dA = dL + dM. Since we are interested in proving a lower bound for the
payoff, we may (and shall) assume that the value of v is the value which is optimal
for the Merton (no-transaction-costs) problem:

p+ (R—=1)(r+ % o?r2)
- v )

If R > 1, this is always positive, but if R € (0,1) we require p to be large enough
that this is positive, else the optimisation problem is ill-posed.

We shall also suppose that two values p_ and p, have been picked so that no
transactions occur while p; is in the interior of I = [p_,p,], and trading occurs at
the boundaries to keep the proportion p; within 7. We may (and shall) suppose that
P =T — €, py = T, + € for some (small) positive e. We shall make a choice of the
starting point py € I, and for simplicity of exposition we shall assume that

Po = Ty.

We can write down the solution to (6) explicitly:

t t 1
wy = Wy exp[/0 opsdW +/0 {(p—r)ps — 0 *p2Yds + (r — )t — day),

where da; = dA;/w;. This therefore allows us to express the payoff as

II = U(ywo) E[/Ooo exp{(1 — R) /Ot opsdWs + (1 — R) /Ot{(u — 7)ps 0’ 2p?Yds

(1= R)(r =)t —(1— R)(Sat}e”tdt]

= U(fywo)E/ Zyexp{(l1 - R /{ —7r)p ——Ups}ds
(1= R)(r— )t —(1— R)(Sat}e”tdt]
> Ulyw) E /0 ~ Ziexp{—at — (1 — R)(Sat}dt] (8)
where

¢ 1 st
7, = exp((1 - R) /0 opydW, — - /0 (1= R)2o%pds)

is a positive martingale, and

R
—a = —p+(1—R)mei}1{7'—’Y+(N—7")Z—50222}-
’R
= —p+ (- Rr—y+ 5 (w2 =)
2
R
= —(XO—(]_—R)%EZ (9)



Now we know that the effect of the martingale Z is to change the measure with
respect to which we take expectation; if P* is the new measure, defined by
dP*
dP

[3)

Fi

then under P*,
dW; = dW, — (1 — R)op,dt (10)

is a Brownian motion. Thus the bound(8) can be re-expressed as
1 > Ulwo) E* [/ exp{—at — (1 — R)da,}dt, (11)
0

and what remains is to understand the term involving a; in (11). For that we consider
the process p, which can be shown to solve the stochastic differential equation

dp = op(1—p)dW +p{(p—7)(1 =p)+~v—0’p(1 = p)}dt + k-dL/w — k. dM/w
= op(1—p)dW* +p{(u—7)(1 =p) +7—0’p(1 —p) + (1 — R)o} dt
+k_dL/w — kydM[w

= op(1 —p)dW* +b(p)dt + k_dL/w — k. dM/w (12)
where
Ky = 1—=pio
ke = 1—=(1-=p_)d

bp) = p{lu—r)(1—p)+v—0’p(1—p)+ (1— R)o}

Thus under P* the process p is an autonomous diffusion with bounded drift, reflected
at the ends of the interval I, and the local time processes at the endpoints are

di_(t) = k_dL(t)/w(t), dli(t) = kedM(t)/w(?).

If G denotes the generator of the diffusion p, and 9] (respectively, 1) is the in-

creasing (respectively, decreasing) solution to
(a—G)f =0,
then the expectation in (11) can be expressed as
F(z;a) = FE* [/ exp{—at — (1 — R)da;}dt|py = x]
0

= F [ | expi=at = B1(6) = 8L (1) tlpo = x]
= o Yt + iy, (13)



where 3+ = (1 — R)§/k+ and the constants . are determined from the differential
equation satisfied by F":

GF —aF = -1, (14)
F(p-) = B-F(p-), (15)
F'(py) = —B:+F(p4). (16)

While these can be solved explicitly for 7., it is not really necessary to write out the
solution explicitly. Notice that in the case R > 1, for large enough 4 the expectation
in (11) will be infinite. However, there is always an interval of d-values around 0 in
which the expectation is finite, which is sufficient for our purposes since we wish to
look at limiting behaviour as 6 | 0. We end up with an expression for F(m,) which
depends explicitly on the small parameters ¢ and 4, and we may determine to first
order how this expression varies with those small parameters. The partial derivative
with respect to o of F(m,, ) at § =0 and o = g is —1/a, of course. The partial
derivative with respect to § of F(m,,«) at § = 0 and a = « is less obvious, but
is quickly obtained using Maple (the worksheet used to do the calculations of this
paper is available from the author on request); it is also quickly expanded in powers
of € to give to leading order

PP =)
2ade

(17)

after some rearrangement. Thus to leading order in (g, ), the lower bound (11) for
the payoff is

U(’on)li— (1 -R)o*Re*  o’mi(1 —m,) (1—R)5]’

o 20 20 ¢

using (9) and (17). The loss is thus

2
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which was the form we declared at (1).
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