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Abstract The use of trading stops is a common practice in financial markets for a
variety of reasons: it reduces the frequency of trading and thereby transaction costs;
it provides a simple way to control losses on a given trade, while also ensuring that
profit-taking is not deferred indefinitely; and it allows opportunities to consider re-
allocating resources to other investments. In this study, we try to explain why the
use of stops may be desirable, by proposing a simple objective to be optimized. We
investigate a number of possible rules for the placing and use of stops, either fixed
or moving, with fixed costs, showing how to identify optimal levels at which to set
stops, and compare the performance of different rules and strategies.
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1 Introduction.

When an investor acquires fund shares, it is common to set stops at which he will
come out of the position; for example, he may decide to come out of the position
when the value has either risen by 0.1 or fallen by 0.03. Such a fixed-stop trading
rule is the simplest to describe, but there are other possibilities, where perhaps the
lower stop rises as the value of the position rises, thereby locking in any gain, while
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allowing the position to continue to rise in value. The latter kind of trading rule is
called a trailing stop and it is commonly used in practice.

In this paper, we shall study some simple explicit instances of trading to stops,
and try to answer four questions: Is it a good idea to trade to stops in some way? Is
it sufficient to consider simple stopping rules? Given that we intend to trade to stops
in some way, how would we go about placing them? And when we have reached
one stop, how should we act then? To answer the third of these questions, we shall
propose a simple objective which must be maximized over the parameters defining
the stopping rule. The answer to the first question is more subtle. If we (just for now)
restrict the discussion to rules which trade to fixed stops, what we find is that in most
instances the best thing to do is to put the lower stop at−∞, which is counter-intuitive.
It is counter-intuitive, because one of the reasons to use stops is to prevent the trade
running up huge losses, and yet it seems from the theory that this is exactly what
we should be doing. However, the theoretical predictions are based on very precise
assumptions about the dynamics of the fund; if we relax these strong assumptions, we
find a different picture emerging. Specifically, we shall assume that the value of the
position evolves as a Brownian motion with constant drift and constant volatility; the
volatility will always be assumed to be known, but we will relax the assumption that
the drift is known with certainty to the more realistic assumption that we have some
(finite atomic) prior over the possible values of the drift. Given this, we find that there
is good reason to place stops, either fixed or moving, as a means to protect against
model uncertainty, and we compare various different ways of placing the stops. As
a stop gives the opportunity of reallocating the investment capital to a different fund
or to stick with the original one, the outcome of the trade may help to decide which
action should be performed which gives an answer to the fourth question. To find
out whether simple rules are sufficient, the results will be compared to an optimal
stopping problem. There we see that we can get quite close to the optimal value by
using a very simple stopping rule with fixed stops and a time dependent slope.

2 Model set-up.

We shall suppose that a wealthy individual invests into a fund at time 0, requir-
ing the commitment of unit capital. The trading gains of this position at time t is
Xt = σWt + µt, where W is a standard Brownian motion1. Now this gain is not re-
alized until the position is closed out, at some stopping time T = T1, when the investor
will be able to book a gain equal to XT , which may be negative. We shall suppose that
when the position is closed, a constant cost equal to c will be paid. Having closed
out the position, we will suppose that the investor repeats the process, once again
investing unit capital in the position, and using the same stopping rule applied to the
rebased process (X(T1 + t)−X(T1))t≥0. Thus the stopping times Tn (which are the
times at which the position gets closed and immediately re-opened) form a renewal

1 It might be considered more natural to use geometric Brownian motion to model the gain process,
taking a CRRA utility to express the investor’s preferences. However, it turns out that in the case of fixed
stops the optimization problem results in an uninteresting solution; the optimal placing of the upper stop
is either at infinity, or at the starting value.
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process. The time-0 value of this repeated trading activity will be

ϕ ≡ E
[
∑
n≥0

e−ρTn+1 U(X(Tn+1)−X(Tn)− c)
]

(2.1)

where ρ is the (constant) rate of discounting , and the utility U is some smooth con-
cave strictly increasing function. If we cared only about the net present value of all
the gains from trade over time, we would take ρ = r, the riskless rate of interest, and
U(x) = x, and take expectations with respect to the pricing measure. However, this is
not the only possible case of interest. Indeed, we shall see that we must allow strict
concavity of U to explain why an investor would wish to place stops; when it comes
to studying this, we shall always take the exponential utility function

U(x) = 1− exp(−γx) (2.2)

for some γ > 0, the coefficient of absolute risk aversion. The (risk-neutral) case of
linear U is regarded as a limiting case, using the limit as γ ↓ 0 of γ−1(1− e−γx)

The following simple result reduces the calculation of ϕ to two simpler calcula-
tions.

Proposition 2.1 The value ϕ of the trading strategy is

ϕ =
E[e−ρT U(XT − c)]

1−E[e−ρT ]
(2.3)

where T ≡ T1.

PROOF. By the strong Markov property, by decomposing the objective (2.1) at the
first time T = T1 that the position gets closed out we see that

ϕ = E[e−ρTU(XT − c)]+E
[
∑
n≥1

e−ρTn+1U(X(Tn+1)−X(Tn)− c)
]

= E[e−ρTU(XT − c)]+E
[
e−ρT E[∑

n≥1
e−ρ(Tn+1−T )U(X(Tn+1)−X(Tn)− c)|FT ]

]
= E[e−ρTU(XT − c)]+E[e−ρT ]ϕ.

Rearrangement gives the result (2.3).
�

To set the stage, we now offer a few natural examples which we will study in more
detail later.

Example 1: fixed stops. This is the easiest example of all. We take a > 0, b > 0 and
set

T ≡ inf{t : Xt =−a or Xt = b}. (2.4)

Example 2: trailing stop. Fix a > 0 and let X̄t ≡ sup0≤s≤t Xs. Then the trailing stop
is defined by the stopping time

T ≡ inf{t : X̄t −Xt = a}. (2.5)
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Example 3: trailing stop and fixed stop. This time we fix a > 0 and b > 0, and set

T ≡ inf{t : X̄t −Xt = a or Xt = b}, (2.6)

which gives the trailing stop of Example 2 but with a take-profit stop at b > 0.

Example 4: converging stops. Fix a > 0 and ε > 0. Then we use the stopping time

T ≡ inf{t : (1+ ε)X̄t −Xt = a}. (2.7)

In this situation, it is easy to see that the trade stops out before X first hits a/ε; it has
similarities to Example 3, and in the special case ε = 0 we recover Example 2.

Since our main interest is in the case of CARA utility U (2.2), we see that the
value of the problem can be expressed as

ϕ =
E[e−ρT ]− eγcE[e−ρT−γXT ]

1−E[e−ρT ]

=
L(ρ,0)− eγcL(ρ,γ)

1−L(ρ,0)
(2.8)

where for arbitrary ρ, γ ≥ 0

L(ρ,γ)≡ E[e−ρT−γXT ] (2.9)

is the joint Laplace transform of the time and place of stopping. Thus the first objec-
tive is to identify the joint Laplace transform L as explicitly as possible in each of the
examples under investigation. As we shall see, this is not the end of the story, merely
the start.

3 Analysis of the examples.

In this Section, we shall analyze the examples presented in Section 2 and derive ex-
plicit solutions for the joint Laplace transform L in each case. The first example is
solved using differential equations techniques, which we can think of as an applica-
tion of Itô calculus. Similar techniques may also be used to solve the other examples,
but as the state variable is no longer one-dimensional, the construction of the correct
functions is not as simple or transparent. For this reason, we prefer to derive the an-
swers using Itô excursion theory, introduced by Itô in [4]; see [6] or [7] for accessible
accounts.
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3.1 Example 1: fixed stops.

We write

L ≡ 1
2 σ

2 d2

dx2 +µ
d
dx
−ρ (3.1)

for the generator of the diffusion X with killing rate ρ . If f : R 7→R is C2 and satisfies
L f = 0, then by an application of Itô’s formula we have that

Mt ≡ e−ρt f (Xt) is a local martingale

which is bounded on the interval [0,T ], and therefore2 (M(t ∧T ))t≥0 is a martingale.
By the Optional Sampling Theorem, it follows3 that

f (0) = E0[e−ρT f (XT )] (3.2)

so in order to compute the numerator and denominator in (2.3) it is enough to solve
the ODE L f = 0 in [−a,b] with the appropriate boundary conditions.

If we let −α < 0 < β be the roots of the quadratic

1
2 σ

2z2 +µz−ρ = 0, (3.3)

then the solution to the ODE

L f = 0, f (−a) = A, f (b) = B

is

f (x) =
(Aeβb−Be−βa)e−αx +(Beαa−Ae−αb)eβx

eαa+βb− e−αb−βa .

Evaluating at x = 0 simplifies to

f (0) =
A(eβb− e−αb)+B(eαa− e−βa)

eαa+βb− e−αb−βa . (3.4)

If we now take A = exp(γa) and B = exp(−γb) we read off the joint Laplace trans-
form L1 for this first example:

L1(ρ,γ) =
eγa(eβb− e−αb)+ e−γb(eαa− e−βa)

eαa+βb− e−αb−βa . (3.5)

Substituting the form of L1 into the expression (2.8) gives the value ϕ for this stopping
rule. The dependence of the right-hand side on ρ is of course through the dependence
of α , β on ρ as solutions to (3.3). The mean of the hitting time can be derived from
the Laplace transform as

E[T ] = −∂L1

∂ρ
(0,0)

=
b(eka−1)−a(1− e−kb)

µ(eka− e−kb)
(3.6)

after some calculations, where k ≡ 2µ/σ2.

2 Here, of course, T is given by (2.4).
3 The notation Ex denotes expectation under the initial condition X0 = x.
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3.2 Example 3: trailing stop and fixed stop.

We deal with this example first, and read off the solution to Example 2 as the special
case b = ∞. Recall that we take the stopping time

T ≡ inf{t : X̄t −Xt = a or Xt = b}, (3.7)

where X̄t ≡ sup0≤s≤t Xs. The process Y ≡ X − X̄ is a continuous strong Markov pro-
cess with values in X ≡ (−∞,0], and 0 is a recurrent point for this process. The Itô
theory of excursions [4] applies to this process, and we will make use of it. Let U
denote the space of all excursions of Y away from 0, that is, continuous functions
f : R+ →X with the property that for some ζ = ζ ( f ) ∈ (0,∞], the lifetime of the
excursion, the set f−1((−∞,0)) is of the form (0,ζ ). Regarding U as a subset of
C(R+,R) induces the subset topology on U , and in fact U is a Polish space; see, for
example, [7] for definitions and basic properties. The process X̄ is a continuous ho-
mogeneous additive functional of Y , growing only when Y = 0, and acts as the local
time at zero for Y . The open set Y−1((−∞,0)) is the disjoint union of countably many
excursion intervals I j, and the point process Π ≡ {(L j,ξ

j) : j ∈ Z} is a Poisson point
process in (0,∞)×U , where

L j = X̄(I j),

ξ
j = Y |I j .

The mean measure of Π is Leb× n, where n is the σ -finite excursion measure: see
Itô [4]. The key to effective use of Itô excursion theory is an explicit characterization
of the excursion measure n. Once the excursion has escaped from 0, it evolves like
the diffusion X− X̄ until it first hits zero, and it leaves 0 according to an entrance law.

We shall use excursion theory to calculate for any γ ≥ 0 the expectation

L(ρ,γ)≡ E[ exp(−ρT − γXT ) ]; (3.8)

evidently, once we have this, we can obtain the numerator and denominator in (2.3)
by suitable substitutions and combinations. As explained in [6], we deal with expec-
tations such as (3.8) by introducing an independent exp(ρ) time τ , and writing

E[ exp(−ρT − γXT ) ] = E[ e−γXT : T < τ]. (3.9)

The way this is handled by excursion theory is to think of τ as being the first event
time τ1 in a Poisson process on R+ of intensity ρ , with event times τ1 < τ2 < .. .. This
Poisson process of times can be dealt with by marking the excursions of Y , each inde-
pendently of all others, according to a Poisson process of intensity ρ . The excursion
point process Π gets modified to the marked excursion point process Π̃ , where each
excursion ξ j gets augmented to ξ̃ j ≡ (ξ j,N j), where N j is an increasing Z+-valued
path, representing the path of the marking process restricted to the excursion ξ j. We
observe the marked excursion process Π̃ until either local time X̄ reaches b; or we
see an excursion which gets to −a before any mark; or we see an excursion which
gets marked before it reaches {0,−a}. To set some notation, let

A≡ {excursions which are marked before reaching 0 or −a}; (3.10)
B≡ {excursions which get to −a with no mark before reaching −a }. (3.11)
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We shall calculate n(A) and n(B) quite simply, but for this we need to characterize
the excursion measure effectively. Let −α < 0 < β be the roots of the quadratic
1
2 σ2t2 + µt−ρ; then routine calculations lead to the conclusion that for any −a <
x < 0

Ex[1− e−ρ H0∧H−a ] =
1− e−βa

eαa− e−βa (1− e−αx)+
eαa−1

eαa− e−βa (1− eβx) (3.12)

Ex[e−ρH−a : H−a < H0] =
e−αx− eβx

eαa− e−βa (3.13)

where Hz ≡ inf{t : Xt = z} is the hitting time of z. Since the measure of excursions
which reach −ε is asymptotic to ε−1 as ε ↓ 0 (see Williams’ decomposition of the
Brownian excursion law [9], II.67), we conclude that

n(A) = lim
ε↓0

1
ε

E−ε [1− e−ρ H0∧H−a ] =
βeαa +αe−βa− (α +β )

eαa− e−βa , (3.14)

n(B) = lim
ε↓0

1
ε

E−ε [e−ρH−a : H−a < H0] =
α +β

eαa− e−βa . (3.15)

The first excursion in A∪B comes at local time rate

ν ≡ n(A∪B) =
βeαa +αe−βa

eαa− e−βa . (3.16)

We shall stop the point process either at the first time we see an excursion in A∪B,
or when local time reaches b, whichever comes sooner.

Now we come back to the expectation (3.9), and consider how the event T < τ

could happen: this could either be because X̄ reaches b before the first excursion in
A∪B; or because the first excursion in A∪B happens before X̄ reaches b, and is in
fact an excursion in B. By simple properties of Poisson processes, we discover after
a little thought that

L3(ρ,γ)≡ E[ exp(−ρT − γXT ) ]

= E[e−γXT : T < τ]

= e−νb−γb +
∫ b

0
νe−νy n(B)

ν
e−γ(y−a) dy

= e−(ν+γ)b +
n(B)eγa

ν + γ
(1− e−(ν+γ)b). (3.17)

As before, the mean of T can be computed by differentiating the Laplace transform
with respect to ρ at zero. We find4 that

E[T ] =
σ2

2µ2 (e
ka−1− ka)(1− e−mb) (3.18)

where k = 2µ/σ2 as before, and m = k/(eka−1).

4 The calculations were carried out by a symbolic mathematics package, and by traditional methods.
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3.3 Example 2: trailing stop.

When b = ∞, the results of subsection 3.2 reduce to simpler expressions

L2(ρ,γ) =
n(B)eγa

ν + γ
, E[T ] =

σ2

2µ2 (e
ka−1− ka). (3.19)

The first of these agrees with the result of Taylor [8], equation (1.1) and can easily be
obtained from a result of Glynn & Iglehart [3]. Lehoczky determined this quantity in
[5], equation 4, for the larger class of time homogeneous processes.

3.4 Example 4: converging stops.

In this example, the stopping time is given by (2.7):

T ≡ inf{t : (1+ ε)X̄t −Xt = a}.

The analysis of this example is quite similar to Example 3, except that the excursion
measure of the excursions which stop the process now depends on how much local
time has elapsed. When local time X̄ has reached `, then any excursion which either
contains a mark, or reaches−a+ε` will stop the Poisson point process. Exactly as at
(3.14), (3.15), the intensity of excursions which are marked before reaching −a+ ε`
or zero is

nA(`)≡
βeα(a−ε`)+αe−β (a−ε`)− (α +β )

eα(a−ε`)− e−β (a−ε`)
, (3.20)

and the intensity of excursions which get to −a+ ε` before getting marked is

nB(`)≡
α +β

eα(a−ε`)− e−β (a−ε`)
. (3.21)

So in total, the intensity of excursions which stop the Poisson point process is

nA∪B(`) =
βeα(a−ε`)+αe−β (a−ε`)

eα(a−ε`)− e−β (a−ε`)
. (3.22)

We can now calculate

F̄(t) ≡ P(X̄ reaches t before the stopping excursion)

= exp
[
−
∫ t

0
nA∪B(s) ds

]
= exp

{
−β t− ε

−1 log
(

1− e−(α+β )a

1− e−(α+β )(a−εt)

)}
= e−β t

(
1− e−(α+β )(a−εt)

1− e−(α+β )a

)1/ε

,
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which we notice is decreasing with t, and vanishes when t = a/ε as it must. Using
this, we deduce after some calculations that

E[e−γXT−ρT ] =
∫ a/ε

0
e−γ((1+ε)x−a) nB(x)F̄(x) dx

=
∫ a/ε

0
e−γ((1+ε)x−a) α +β

eα(a−εx)− e−β (a−εx)
F̄(x) dx

=
1
ε

(
e−(γ+β )a

1− e−(α+β )a

)1/ε ∫ 1

exp{−(α+β )a}
(1− t)(1−ε)/ε t−c dt (3.23)

where c = (γ + β )(1+ ε)/ε(α + β ). The answer is therefore available in terms of
incomplete beta functions.

4 Placing of the stops.

The identification of the joint Laplace transform of T and XT in each of the previous
examples now allows us to evaluate the objective ϕ (2.8), and by varying the pa-
rameters a and b we are able to optimize ϕ . However, numerical investigation shows
that in many cases it is optimal to let a→ ∞. If this happens, then there would be
no reason to place a lower stop, which is somewhat unexpected. We can analyze this
phenomenon quite completely for the case of fixed stops, which we shall now do. The
other examples are more complicated, and we have not pursued the analysis of this
phenomenon in those instances; numerical investigations show similar behavior. In
any case, since we observe that often for fixed stops the best thing is to use no lower
stop, we are forced to re-assess the modeling assumptions.

Accordingly, we will until further notice restrict attention to the fixed-stops exam-
ple, Example 1. The joint Laplace transform L1 of T and XT has been found (3.5),
and so we are able to obtain an explicit expression for the value ϕ using (2.8). Since
we are concerned with the behavior of this as a→ ∞ with all other parameters fixed,
we shall use the (local) notation ϕ(a), where we have explicitly

ϕ(a) =
L(ρ,0)− eγcL(ρ,γ)

1−L(ρ,0)

= −1+
1− eγcL(ρ,γ)

1−L(ρ,0)

= −1+
eαa−B1e−βa− (1−B1)eγ(a+c)−B2eγc(eαa− e−βa)

eαa−B1e−βa− (1−B1)−B3(eαa− e−βa)
(4.1)

where B1 = e−(α+β )b, B2 = e−(γ+β )b, B3 = e−βb, all positive constants less than 1.
The large-a behavior of this expression is determined in the following little result.

Proposition 4.1 Consider the behavior of the objective (2.8) in the case of fixed stops
(2.4) as a→ ∞, with b fixed.

(i) If γ > α then
lim
a→∞

ϕ(a) =−∞ (4.2)
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(ii) If α > γ and b > c then
ϕ(a)< ϕ(∞) (4.3)

for all a > 0.

PROOF. The proof is given in the Appendix A.

REMARKS. It is easy to understand the content of Proposition 4.1. In the case where
γ > α , it is not advantageous to let a→ ∞ because although the expectation

E[e−ρT : XT =−a]∼ e−αa (4.4)

is getting exponentially small, the utility when this event happens is getting large
negative exponentially, and at a greater rate. In contrast, if γ < α , the exponential
decay of the expectation (4.4) beats the growth of the penalty, and the investor can
ignore the penalty for stopping at a low negative level. The condition b > c is needed
for the proof, but has a natural interpretation; if b < c, we are certain to be losing
money every time we review our portfolio, so we would never consider entering this
trade.

For a reasonable solution, then, it seems that we require γ > α . However, in typi-
cal examples, this can lead to coefficients γ of absolute risk aversion so high that the
value ϕ is always negative, so we would never engage in this trade! The point is that
−α solves the quadratic (3.3), and if µ > 0, we will always have α > 2µ/σ2, a lower
bound which need not be small. So for a solution with realistic values of γ , and with
a rationale for a lower stop at a finite position, it seems that we are forced to consider
situations where µ is negative. But if the growth rate of the trade was negative, and
we are paying transaction costs, we would certainly never want to enter into it!

The resolution of these seemingly inconsistent requirements is to suppose that
we are not certain of the true value of µ . If we have some prior distribution over
possible µ values which allows positive probability that µ is negative, we will find
that even for small values of γ the punishment for stopping at very low levels really
hurts, and we will want to use a finite lower stop. On the other hand, if the probability
of decently positive values of µ is quite high, we will be emboldened to take part in
the trade.

Once we allow that the value of µ may be random, there are several possible
stories which one could tell. We might have

(A) Each time we come out of a trade, we go back into the same fund;
(B) Each time we come out of a trade, we pick an independent fund with the same

probabilistic structure and invest in that;
(C) Each time we come out of a trade on the down side, we pick an independent fund

with the same probabilistic structure and invest in that;
(D) We perform an optimal stopping analysis for the Bayesian learning model. We

consider a learning process for the drift. Having observed the data up to some
time τ0, resulting in a prior µ0, we assume the distribution of the drift to be
N(µ0,σ

2/τ0). Then, referring to [1], the estimation process of the drift evolves
like

µ̂(t,Xt) =
τ0µ0 +Xt

τ0 + t
(4.5)
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and the gain process is
dXt = µ̂(t,Xt)dt +σdWt . (4.6)

Each time we reach the stopping region, we invest in an independent fund with
the same probabilistic structure.

The value function to be optimized depends on which of these stories we choose.
If we let Eµ denote expectation when the drift is µ , and let m be the distribution of
µ , then the value ϕ̄ to be optimized has the forms:

For (A)-(C), every time we reallocate to a new investment, we pick a fund with
constant drift according to the distribution m. Then, ϕ̄ =

∫
ϕ(µ)m(dµ) with a differ-

ent kind of ϕ(µ).

(A) As in (2.3), we have value ϕ(µ) given by

ϕ(µ) = Eµ
[

e−ρTU(XT − c)
]
+Eµ

[
e−ρT ]

ϕ(µ),

so the overall value this time is given by

ϕ̄ =
∫ Eµ

[
e−ρTU(XT − c)

]
1−Eµ

[
e−ρT

] m(dµ); (4.7)

(B) This time we have value ϕ(µ) given by

ϕ(µ) = Eµ
[

e−ρTU(XT − c)
]
+Eµ

[
e−ρT ]

ϕ̄,

so the overall value will be

ϕ̄ =

∫
Eµ
[

e−ρTU(XT − c)
]

m(dµ)

1−
∫

Eµ
[

e−ρT
]

m(dµ)
; (4.8)

(C) If we denote by H the event that the position closes out on the high side, then

ϕ(µ) = Eµ
[

e−ρTU(XT − c)
]
+Eµ

[
e−ρT : H

]
ϕ(µ)+Eµ

[
e−ρT : Hc ]

ϕ̄,

so the overall value is

1−
∫ Eµ [e−ρT : Hc ]

1−Eµ [e−ρT : H ]
m(dµ) (4.9)

For the above three stories, the main point is that once we are able to find an
explicit expression for the Laplace transforms L(ρ,γ|µ) = Eµ [ exp(−ρT − γXT ) ]
and LH(ρ,γ|µ) = Eµ [exp(−ρT − γXT ) : H ] for the different stopping rules, we are
able to deduce the value ϕ̄ just by doing at most two integrations. L(ρ,γ|µ) was
already calculated in section 3 for all stopping rules. For Example 1, LH(ρ,γ|µ) can
be obtained in the same manner by simply changing the boundary conditions giving

LH(ρ,γ|µ) =
(eαa− e−βa)e−γb

eαa+βb− e−αb−βa ,

where µ is hidden in α and β , respectively. For Example 3, LH(ρ,γ|µ) is a byproduct
of equation (3.17):

LH(ρ,γ|µ) = e−(ν+γ)b.
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(D) This time, the value must satisfy

ϕ̄ = sup
τ≥0

E
[
e−ρτ

{
U(Xτ − c)+ ϕ̄

} ]
. (4.10)

We propose to solve this by recursively solving

ϕ̄n+1 = sup
τ≥0

E
[
e−ρτ

{
U(Xτ − c)+ ϕ̄n

} ]
. (4.11)

starting from ϕ̄0 = 0. We solve a Crank-Nicolson finite-difference scheme to ob-
tain the answer. The calculations are given in Appendix B.

5 Numerical study.

We shall compare the stopping rules of Section 3 in several examples. In all cases,
we shall assume that σ = 0.3, γ = 2.5, c = 0.0005, and ρ = 0.1. We have explored
various other examples, and the behavior which we report in these two appears to
be quite typical. A further comparison we make is with a fixed-revision rule, where
the investor chooses T > 0 fixed, and then revises his position at multiples of T ,
regardless of the performance of the fund. The objective is once again given by (2.3),
though now of course T is constant. We find the investor’s best choice of fixed T and
compare the performance of this rule with the various rules determined by stops.

In the first example, we assume that the investor knows µ = 0.15 with certainty.
There are four5 stopping rules to be considered now, and the results are given in table
1. Notice how with fixed stops or with a fixed upper stop and a trailing stop, the best

Table 1 Known µ . Example with µ = 0.15, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops ∞ 0.0184 4.1553 0.1224
Trailing stop 0.0894 0.5314 0.0983
Trailing stop and fixed stop ∞ 0.0184 4.1553 0.1224
Fixed exit time 0.8724 0.3780

choice of a is a = ∞; it always pays to push the lower stop all the way down. If this
is done, then of course the two stopping rules amount to stopping at b, and so it is
no surprise that the values, the optimal choices of b, and the mean time per trade
all agree. The value ϕ as a function of a and b is displayed in Figure 1; for finite
a, the pictures for Examples 1 and 3 are in principle different, but in this example
they are not visibly different. Notice that the value for a fixed upper and trailing stop
is substantially higher than for a trailing stop only; this is of course to be expected,
as we have optimized over a larger set, but the magnitude of the improvement is

5 The converging stops are left out in the following tables because we found that for this stopping rule it
is optimal to mimic stopping rule 3 by setting a = b∗ε , where b∗ is the optimal upper barrier for Example
3, and letting ε converge to 0.
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noteworthy. The trailing stop example, Example 2, is quite different in character,
with a much shorter mean time in trade. The corresponding value ϕ as a function of
a is displayed in Figure 2. The fixed revision rule performs very poorly relative to the
two-sided stops rules, Examples 1 and 3.

As we explained in Section 4, it is uncertainty in the µ which vindicates trading
to stops, and to illustrate this we study the stories where we do not suppose that µ

is known. For (A)-(C), we assume that the drift of the fund we pick is a random
variable with prior N(µ0,σ

2
µ) distribution. We suppose that µ0 = 0.15 and we take

two different values for the standard deviation: firstly, σµ = 0.3; and secondly the
more uncertain case σµ = 0.7.

(A) The results obtained for the story where we go back into the same fund are re-
ported in the following tables. Table 2 is for σµ = 0.3 and table 3 is for σµ = 0.7.
For σµ = 0.3, the calculated values of the three stopping examples are displayed

Table 2 Story (A). Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops 0.2159 0.0470 0.8416 0.0998
Trailing stop 0.0603 0.2397 0.0439
Trailing stop and fixed stop 0.2375 0.0464 0.8398 0.0984
Fixed exit time 0.5627 0.0670

Table 3 Story (A). Example with µ0 = 0.15, σµ = 0.7, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops 0.0837 0.0559 0.4410 0.0475
Trailing stop 0.0411 -0.4264 0.0203
Trailing stop and fixed stop 0.1069 0.0523 0.4223 0.0452
Fixed exit time 0.0698 0.0290

in Figures 3, 4 and 5, respectively. Due to the risk aversion, the values of all the
rules have dropped, particularly the stops trading rules. As with the certain growth
rate, the two-stops rules do substantially better than either the trailing stop alone
or the fixed time to revision. Mean times in trades have fallen in all cases. As
before, there is no appreciable difference between Examples 1 and 3; the trailing
stop has very little effect. Increasing the deviation of the drift to σµ = 0.7 leads to
even smaller objectives. In all cases, the parameter a has fallen to protect against
huge losses.

(B) The next tables 4 and 5 show the results for σµ = 0.3 and σµ = 0.7, respectively,
if we pick a new independent fund each time we come out of a trade. The values
of the three stopping examples which were calculated with respect to σµ = 0.3
are displayed in Figures 6, 7 and 8, respectively. Compared to story (A), the val-
ues of the stops trading rules have grown. It can be seen that the optimal lower
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Table 4 Story (B). Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops 0.0191 0.3409 1.4071 0.0804
Trailing stop 0.0952 1.3354 0.1159
Trailing stop and fixed stop 0.0985 0.6558 1.3431 0.1236
Fixed exit time 0.5596 0.0662

Table 5 Story (B). Example with µ0 = 0.15, σµ = 0.7, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops 0.0083 0.3426 4.8955 0.0338
Trailing stop 0.0728 4.1224 0.0720
Trailing stop and fixed stop 0.0767 0.7572 4.1695 0.0792
Fixed exit time 0.0698 0.0290

barriers a have fallen to much lower values, while the values for the upper barri-
ers b are much larger. The reason for this is that we do not want to stop a good
investment having a large positive drift, but we get rid of those investments with
negative drifts quickly. The difference in value of Examples 2 and 3 is compar-
atively small because the gain process in Example 3 will only occasionally get
stopped at b; most will be caught by the trailing stop. We see however that the
fixed stops Example 1 performs better than Example 3 with a trailing stop, pre-
sumably because the trailing stop may prematurely close out a trade which might
have turned out to be profitable. Interestingly, when we compare the values for
Examples 1 and 3 in story (B) with the values for Examples 1 and 3 in the certain-
drift case, we find that for the smaller value σµ = 0.3 we do better if we know
the drift, while for the larger value σµ = 0.7 we do better if we have uncertainty
in the drift. The reason is not hard to discern. For small σµ , risk aversion is the
dominant effect, but for larger σµ we benefit from the wider spread of µ-values;
the lower stop closes down the unprofitable trades, but we get more of an upside
from the profitable trades.

(C) In story (B) we have seen that the two-stops examples have small a to shut down
the unprofitable trades, and large b to let the gains accumulate when we have
found a profitable trade. In contrast, when we use story (C), which only changes
funds if we come out at the lower stop, the results in the tables 6 and 7 look
quite different6. For σµ = 0.3, the values are displayed in Figures 9 and 10, re-

Table 6 Story (C). Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops 0.3620 0.0239 6.8525 0.0370
Trailing stop and fixed stop 0.3735 0.0240 6.8539 0.0371

6 Of course, it does not make any sense to consider the single stopping rules, trailing stop and fixed exit
time, because there we can not distinguish between upper and lower outcomes
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Table 7 Story (C). Example with µ0 = 0.15, σµ = 0.7, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Objective τ

Fixed stops 0.2020 0.0213 20.216 0.0125
Trailing stop and fixed stop 0.2119 0.0219 20.231 0.0129

spectively. Notice firstly that the values of the objectives are substantially higher,
because we are allowed to shop around for good funds, and once we have found
one, we are allowed to play that fund until we get stopped out at a lower stop.
Because of this, we have to be careful not to stop out a fund at the lower stop
unless we are quite confident that it is a poor performer; the loss of profit from
killing a good fund too early would be considerable. So this explains why we see
larger a values than for story (B). We also see much smaller b values, which we
understand as a desire to book profits quickly and avoid discounting them away;
if we think we are playing a good fund, we will gladly do this, because we can
just return to playing the same good fund immediately, in contrast to the situation
of story (B) where we would have to pick a new independent fund and take our
chances on its quality.
For the first time, we see Example 3 outperforming Example 1 (but only very
slightly). This seems to be because the trailing stop will allow a slightly quicker
closing out of bad trades, and since the lower stop is initially quite far from 0, this
difference matters.
Another way we could try to capture this advantage would be by adding a time
dependent slope to the barriers, and this is examined in section 6. For the same
reasons as in story (B), a larger standard deviation σµ = 0.7 yields a better objec-
tive.

(D) The Bayesian story has similarities to story (B); the stochastic nature of the funds
is identical, but we allow any stopping rule. As was recorded at (4.6), we can
model the gain process in the observation filtration as the solution of a stochastic
differential equation, and the optimal stopping problem for this is found by solv-
ing the recursive scheme (4.11) by Crank-Nicolson. To compare with our results
for story (B) using σµ = 0.3, we propose to take a prior distribution for µ with
mean 0.15 as before, and precision τ0 = σ2/σ2

µ = 1. Table 8 compares the results
from story (B) with the optimal solution obtained using story (D). Of course, we
cannot report any fixed values for the optimal stopping solution as the stopping
boundary is a curve, which can be see in Figure 11. The shape of the stopping
region can be interpreted as time-dependent decreasing upper stop η(t) and an
increasing lower stop ξ (t). The upper stop ξ begins at a high level to let good
investments run and the lower stop η starts at a small negative value to imme-
diately get rid of bad investments. As time goes by, the state of the gain process
updates the drift estimator (4.5). The threshold η(t) will decrease with t; if we de-
cided to stop at time t when the gain value Xt was y > 0, then we would certainly
want to stop at level y at any later time, because our estimate of µ would then
be smaller and we would be more confident in that estimate. A corresponding
argument applies to the lower stop ξ (t).
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Table 8 Story (D) and story (B). Example with µ0 = 0.15, σµ = 0.3, τ0 = 1, σ = 0.3, γ = 2.5, c = 0.0005,
ρ = 0.1

Best a Best b Objective τ

Optimal stopping 1.6770
Fixed stops 0.0191 0.3409 1.4071 0.0804
Trailing stop 0.0952 1.3354 0.1159
Trailing stop and fixed stop 0.0985 0.6558 1.3431 0.1236
Fixed exit time 0.5596 0.0662

6 Time-dependent slope.

In this section, we examine what happens if some time dependent factors are added
to the stops. Then, for a parameter q, the modified stopping times are as follows:
Example 1: fixed stops. We take a > 0, b > 0 and set

T ≡ inf{t : Xt =−a+qt or Xt = b+qt}.

Example 2: trailing stop. Fix a > 0 and define X̂t = sup0≤s≤t{Xs− qs}. Then we
use the stopping time

T ≡ inf{t : Xt = X̂t −a+qt}.

Example 3: trailing stop and fixed stop. This time we fix a > 0 and b > 0, and set

T ≡ inf{t : Xt = X̂t −a+qt or Xt = b+qt}.

Regarding a process Yt ≡ Xt−qt, then for Y , the above stopping rules correspond
to the time-independent ones defined in section 2. Thus, for process X and the time-
dependent barriers, the joint Laplace transforms can be computed from the Laplace
transforms of the previous sections with respect to process Y .

LX (ρ,γ) = E[e−ρT−γXT ]

= E[e−ρT−γ(YT+qT )]

= E[e−(ρ+γq)T−γYT ]

= LY (ρ + γq,γ)

Having added an additional parameter q which defines the slope of the barriers, we
can optimize over a, b and q to obtain the objectives for the stories (A)-(C). As q = 0
is a feasible choice, the objectives we will find can not be smaller than those found in
section 5. For a better comparison, in the following tables, the optimal objectives for
q = 0 are given as well. As we have seen that the upper barrier is of importance, we
will concentrate on Examples 1 and 3 only. Furthermore, only the case σµ = 0.3 will
be considered. All other parameters are as in section 5.

(A) If we stick with the same fund forever, we will get the results given in table 9.
The results are very close to those in section 5 because the optimal parameter q
is close to 0. In other words, allowing the barriers to have a time-dependent drift
does not yield a substantial improvement.
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Table 9 Story (A) with slope q. Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Best q Objective τ q = 0

Fixed stops 0.2244 0.0447 0.0347 0.8426 0.1005 0.8416
Trailing stop and fixed stop 0.2450 0.0441 0.0346 0.8407 0.0991 0.8398

Table 10 Story (B) with slope q. Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c= 0.0005, ρ = 0.1

Best a Best b Best q Objective τ q = 0

Fixed stops 0.0345 0.2944 0.4949 1.5976 0.0782 1.4071
Trailing stop and fixed stop 0.1102 0.5445 0.2789 1.3519 0.1251 1.3431

(B) Choosing a different investment from the marketplace on each side yields table
10. Just as in the case q = 0, we still get a large b to let good investments run and
a small a to quickly stop bad investments. The improvement in the objective is
much greater for Example 1 than for Example 3.

(C) If we pick an independent fund if we end up on the down side gives the results
which are summarized in table 11. In this case there is a 1.7% improvement of

Table 11 Story (C) with slope q. Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c= 0.0005, ρ = 0.1

Best a Best b Best q Objective τ q = 0

Fixed stops 0.4181 0.0192 0.1212 6.9719 0.0330 6.8525
Trailing stop and fixed stop 0.4274 0.0192 0.1209 6.9721 0.0330 6.8539

the objective due to the slope q. As guessed above, the increasing lower barrier
tackles below-average investments. The slope parameter q is considerably larger
than 0 but it is not as high as in story (B) which reflects the risk to accidentally
stop a good investment.

(D) In section 5, we found that the objective for the best fixed-stops rule is quite far
from the optimum. However, adding a time-dependent drift yields the situation
given in table 12. The result of the optimal stopping problem cannot be improved,

Table 12 Story (D) and story (B) with slope q. Example with µ0 = 0.15, σµ = 0.3, τ0 = 1, σ = 0.3,
γ = 2.5, c = 0.0005, ρ = 0.1

Best a Best b Best q Objective τ q = 0

Optimal stopping 1.6770
Fixed stops 0.0345 0.2944 0.4949 1.5976 0.0782 1.4071
Trailing stop and fixed stop 0.1102 0.5445 0.2789 1.3519 0.1251 1.3431

so we get the same objective as in section 5. But the time-dependent slope pushes
the fixed stop’s objective up by 13.5%, bringing the value much closer to the
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optimum, remarkably so given the very simple-minded nature of the stopping
rule.

Acknowledgements We are grateful to seminar participants at Imperial College London, and at the Cam-
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A Proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. The case γ > α is easy; the dominant term in (4.1) is the term k1eγ(a+c) in
the numerator, and this makes it obvious7 that ϕ(a)→−∞ as a→ ∞.

The second case is more delicate. The limit of ϕ(a) is easily seen to be

ϕ(∞) =−1+
1−B2eγc

1−B3
.

If we now consider ϕ(∞)−ϕ(a), we find a rational expression whose denominator is positive, and whose
numerator is (a positive multiple of)

H ≡ (1−B3)z− (B2eγc−B3)y− (1−B2eγc), (A.1)

where we set z≡ eγ(a+c), y ≡ e−βa for brevity. Thus it will be sufficient to prove that the expression H is
non-negative.

Since b > c, we may write ε = b− c > 0, and then H becomes

H = (1−B3)z+B3(1− e−γ−ε )y− (1−B3e−γε )

= (1−B3)(z−1)+B3(1− e−γε )y−B3(1− e−γε )

= (1−B3)(z−1)−B3(1− e−γε )(1− y). (A.2)

It is clear from the final equation that if we now hold a > 0 fixed, and consider H as a function of γ , then
H is convex, and vanishes as γ ↓ 0. To prove non-negativity of H, we now investigate the gradient of H
with respect to γ , which is

∂H
∂γ

= (1−B3)(a+ c)eγ(a+c)− εB3(1− y)e−γε

= e−γε
[
(1−B3)(a+ c)eγ(a+b)− (1− y)B3(b− c)

]
.

As γ ↓ 0, we obtain the limit

∂H
∂γ

(0) = (1−B3)(a+ c)− (1− y)B3(b− c)

= (1− e−βb)(a+ c)− e−βb(b− c)(1− e−βa)

= e−βb[ (a+ c)eβb +(b− c)e−βa− (a+b)
]

= (a+b)e−βb
[

a+ c
a+b

eβb +
b− c
a+b

e−βa−1
]

≥ (a+b)e−βb[eβc−1
]

> 0,

where we have used convexity of the exponential function for the first inequality. Since H is convex, and
its derivative at zero is positive, it follows that H is increasing, and therefore is everywhere non-negative,
since it is zero at γ = 0.

�

B Crank-Nicolson finite-difference scheme for story (D).

In the sequel it will be shown how to calculate the value ϕ̄n+1 with ϕ̄n given. The gain process satisfies the
diffusion equation given in (4.6). The stopping reward process is of the form

Z(t,Xt) = e−ρt(U(Xt − c)+ ϕ̄n)

≡ e−ρt g(t,Xt),

7 The denominator is asymptotic to eαa(1−B3) which is certainly positive.
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where ρ ≥ 0. We fix a final time T̄ which should be large enough to be outside the continuation region and
define the value function

V (t,x)≡ sup
t≤τ≤T̄

E[e−ρ(τ−t)g(τ,Xτ )|Xt = x] (B.1)

then we have that V ≥ g everywhere, and that

LV +Vt −ρV ≤ 0 (B.2)

which holds with equality when V > g, where L is the generator of the diffusion,

L ≡ 1
2 σ

2 d2

dx2 + µ̂(t,Xt)
d
dx

.

This problem can be solved numerically by using the Crank-Nicolson finite-difference scheme. See [2]
for the original paper or [10] for a more general description. We set down a grid of x-values and a grid
0= t0 < t1 < .. . < tN = T̄ of time values, and let L(n) be a discrete approximation of the diffusion generator
at t = tn. If v(n) denotes the approximation of the value function at time tn, then the Crank-Nicolson method
approximates (B.2) by

1
2 {L

(n)v(n)+L(n+1)v(n+1)}− 1
2 ρ(v(n)+ v(n+1))+∆ t−1

n (v(n+1)− v(n))≤ 0 (B.3)

with equality where it is optimal to continue. Here, we write ∆ tn = tn+1− tn. The unknown in this equation
is v(n); we start with v(N)(x) = g(T̄ ,x), since, by assumption, the final time point T̄ is outside the contin-
uation region, and we work recursively back through the grid in the usual dynamic-programming fashion.
Rewriting (B.3) to make the unknown the subject, we have

(L(n)−ρ−2∆ t−1
n )v(n) ≤−(L(n+1)−ρ +2∆ t−1

n )v(n+1)

≡−α
(n) (B.4)

say, with equality at all places where it is optimal to continue, and with v(n)(x) = g(tn,x) in places where
it is optimal to stop.

However, the problem (B.4) is an optimal stopping problem for the Markov chain with generator8

L(n), with discount rate ρ +2∆ t−1
n , and running reward α(n). It is quite straightforward (and very fast) to

solve this by policy improvement. Probably the simplest thing to do at the boundaries is to insist that the
process gets absorbed there, so in the original stopping problem, we have to stop when we reach one end
or the other end of the x-grid.

8 With a three-point finite difference scheme, the matrix L(n) will usually be a Q-matrix; the calculations
need to check this.
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Fig. 8 Story (B). Trailing stop and fixed stop. Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1
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Fig. 9 Story (C). Fixed stops. Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1
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Fig. 10 Story (C). Trailing stop and fixed stop. Example with µ0 = 0.15, σµ = 0.3, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1
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Fig. 11 Story (D). Optimal stopping problem. Example with µ0 = 0.15, τ0 = 1, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1


