Portfolio Turnpikes

Philip H. Dybvig
Washington University in Saint Louis

L. C. G. Rogers
University of Bath

Kerry Back
Washington University in Saint Louis

Portfolio turnpike theorems show that if preferences at large wealth levels are
similar to power utility, then the investment strategy converges to the power
utility strategy as the horizon increases. We state and prove two simple and
general portfolio turnpike theorems. Unlike existing literature, our main result
does not assume independence of returns and depends only on discounting of
future cash flows. We also provide a critique of portfolio turnpike results, based
on the observations that (1) the time required for convergence is often too large to
be relevant, and (2) there is no convergence for consumption withdrawal problems.

Turnpike theorems in finance make a seductive promise: when the horizon
is long, we can obtain essentially optimal portfolio weights by solving a rel-
atively simple problem assuming power utility with a shape similar to that
of the correct utility function at large wealth levels. Although the literature
contains a number of these results with different technical variations, the
main assumptions that are common in the existing literature are (1) returns
are independent over time (and in most articles i.i.d.), and (2) investments
can grow over time because the riskless rate is positive. It is the purpose of
this article to provide a critical examination of this literature and provide a
new perspective on these results. There are two main contributions in this ar-
ticle. One is to provide a simple and general turnpike result that helps to put
the literature in perspective. The second is to provide numerical examples
that indicate whether convergence is fast enough for practical use. Our main
findings are (1) it is the growth of the economy as reflected in interest rates
or discount bond prices, notindependence, that is critical for the results, and
(2) convergence is too slow to be of practical interest, provided we assume
real rates of interest are small enough to be plausible. We conclude that
while portfolio turnpike theorems enhance our intuition and understanding
of portfolio problems, they are not particularly useful in practice.
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The term “turnpike theorem” has its origins in growth theory. According
to Dorfman, Samuelson, and Solow (1958),

Itis, in a sense, the single most effective way for the system to grow, so
that if we are planning long-run growth, no matter where we start and
where we desire to end up, it will pay in the intermediate stages to getinto
a growth phase of this kind. Itis exactly like a turnpike paralleled by a net-
work of minor roads. There is a fastest route between any two points; and
if origin and destination are close together and far from the turnpike, the
best route may not touch the turnpike. But if origin and destination are far
enough apart, itwill always pay to get on to the turnpike and cover distance
atthe bestrate of travel, even if this means adding a little mileage at either
end. The best intermediate capital configuration is one which will grow
most rapidly; even if it is not the desired one, it is temporarily optimal.

Based on this analogy, these results are called turnpike theorems, and a
significant literature has grown out of this idea. For an agent maximizing
expected utility of terminal wealth at a distant horizon, portfolio turnpike
theorems say that the agent’s optimal portfolio is insensitive to properties
of the utility function at low wealth levels. Such results always assume a
market which is growing indefinitely (as they clearly must); it is then not
surprising that the values of the utility at low wealth levels are unimportant,
as the agent can always get away from these low levels simply by following
the growing market. In particular, portfolio turnpike theorems say that for all
utility functions that are similar (in some suitably defined sense) to a power
utility function at large wealth levels, the optimal portfolio strategy spends
most of its time over a large horizon following a portfolio strategy similar
to the portfolio strategy of the power utility function, a neighborhood of
which is the turnpike.

To introduce turnpike theorems without the full weight of the formal
model, we provide examples in Section 1. These examples form the basis of
our critique of turnpike results. Our critique looks at two separate problems.
First, the optimal path may not lie near the turnpike unless one has an
extremely long horizon. Examples with reasonable parameter values suggest
that it may take a horizon in excess of 50 or 100 years before the optimal
portfolio choice is close to its asymptotic value, even if the utility function
is identical above the initial wealth level. The rate of interest, properly
interpreted as a real rate of interest, seems to be a critical parameter in
determining the rate of convergence. Faster convergence would require us
to assume an unreasonably large real rate of interest. The slow convergence
suggests that the portfolio turnpike results are of little practical import:
using the asymptotically correct strategy may be far from optimal, even at
the largest horizons likely to be encountered in practice.

The second problem with the turnpike results is that they do not hold for
consumption-withdrawal problems. While many investment problems may
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have overall horizons that are very large or even unbounded (such as the
management of a university endowment), these problems involve ongoing
withdrawals for consumption, which are assumed away by the structure of
the portfolio turnpike models. Portfolio turnpike theorems can be relied on
as a useful approximation only when the time until the first consumption
withdrawal is very large, and this is unlikely to be encountered in practice.

In Section 2 we describe the formal model and state our main result,
Theorem 1; this is a comparison theorem that contains many existing results
in the literature. We show that if two agents have similar marginal utilities at
large consumption levels, they must have nearly the same wealth process and
portfolio strategy at early times when the horizon is distant. The intuition for
our main resultis simple: assuming positive interest rates (or something like
that), our portfolio outgrows the low wealth levels for which the two utility
functions are significantly different. If all reinvestment were at the riskless
rate, it would be obvious that it is the shape of the utility function at large
wealth levels that governs the indirect utility function at short horizons.
What is more subtle is to see that the states of nature with low optimal
consumption at the end, while occuring with positive probability given the
presence of risk taking, are not very significant economically, and have a
small influence on initial portfolio choice. From the previous literature it
might seem that this follows from independence of returns and some sort of
law of large numbers; our results do not require independence and therefore
we conclude that it is discounting alone, not discounting combined with
independence, that drives turnpike results.

This main result assumes complete markets in a continuous-time model;
the local means and variances of security returns can follow fairly general
adapted processes. We impose regularity through existence of moments of
the state price density rather than through specific assumptions about the
returns themselves, such as assuming that returns are independent over time
or that stock prices are diffusions. We consider the portfolio strategies of
two agents, and unlike the literature, we do not assume that either agent
necessarily has constant relative risk aversion. Utility functions satisfy a
uniform continuity property which certainly holds if the relative risk aver-
sion is bounded above and below.

One result which is not covered by Theorem 1 is that of Huberman
and Ross (1983). Apart from the inessential difference of being stated in
discrete time, their result uses a weaker notion of equivalence of utilities
(regular variation of marginal utilities, with the same exponent), butit makes
a stronger assumption (independence over time) about returns. Under the
continuous-time analogues of these assumptions, we prove (Theorem 2)
the continuous-time analogue of the Huberman—Ross result. This is the first
continuous-time result of this sort, and it provides a bridge between the
discrete- and continuous-time literatures. One innovation in this result is
that we assume much less smoothness on preferences than do Huberman
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and Ross or the rest of the literature. This is possible because of a result that
shows that there is a smooth utility function with a slightly different horizon
that has exactly the same portfolio choice and wealth process. This result
permits us to apply the results assuming smooth preferences to preferences
with kinks.

The literature on portfolio turnpike theorems includes discrete-time mod-
els [Mossin (1968), Leland (1972), Hakansson (1974), Huberman and Ross
(1983)] and continuous-time models [Cox and Huang (1992), Huang and
Zariphopoulou (forthcoming)]. All of these articles assume i.i.d. returns,
with the exception of Huberman and Ross. Huberman and Ross assume
returns are independent across periods, with bounded support. We do not
assume independence in our main result. In all of the previous literature,
it was also assumed that the reference utility function has constant relative
risk aversion, which we have not assumed [instead, we assume the weaker
uniform continuity condition of Equation (27)].

There are different assumptions in the literature regarding how the utility
function converges to the reference utility function at large wealth levels.
In order to compare our Equation (26), made in Section 2, to the previous
literature, we need to specialize our model by assuming the reference utility
function has constant relative risk aversion. With this specialization, Equa-
tion (26) is the same assumption made by Huang and Zariphopoulou and is
strictly more general than the assumptions of Mossin, Leland, and Cox and
Huang. However, it is less general than that of Huberman and Ross, and
apparently simply different from Hakansson'’s.

The proofs of both Theorem 1 and Theorem 2 are relegated to an ap-
pendix, although the text does outline the main ideas of the proofs. Con-
vergence of relative risk aversion implies regular variation, which in turn
implies the regularity condition of Theorem 1, which shows that many re-
sults in the literature can be read off from our main results. These results
and related comparisons are shown in Lemma 1. Section 3 closes the article,
and the Appendix contains the proofs.

. Examples and Critique

The portfolio turnpike results tell us that, given utility functions that are
asymptotically similar at large wealth, the portfolio strategies are asymp-
totically similar at large horizons. This section uses examples to help the
reader to develop an intuition for the turnpike results and their limitations.
The major limitations of the turnpike results may be summarized in
two critiques: first, examples show that, with reasonable parameter values
(especially when the real riskless rate is reasonably small), the convergence
may be slow (even when the utility function differs from a power function
only at levels below the initial wealth, we may not be near convergence even
with a horizon as long as 100 years!); and, second, we should not expect any
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turnpike results in consumption withdrawal problems. This second critique
is implicit or explicit in many of the turnpike articles, but it is worthy of
attention, especially in combination with the other critique: no consumption
withdrawal over 50 years seems unusual.

In later sections of the article, we will specify our formal model more
precisely, but for now we will present just enough notation to be able to
present the examples without proof. Throughout the article, we will assume
a continuous-time modelin which the underlying uncertainty is generated by
a standard Wiener process that may be multidimensional. For the examples
we will specialize this to fixed coefficients in a world with a one-dimensional
Wiener process and a single riskless asset. We will takebe the fixed
riskless rateu to be the fixed mean return on the risky asset, ana
be the fixed standard deviation of return on the risky asset. As is well
known, the effective budget constraint in this problem can be written as
W = E[Cé&7], where W, is initial wealth, C is consumption;T is the
horizon, ands; = exp(—(r — y2/2t — yZy) fory = (u —r)/o. Finally,
we choose in this section to remain vague on the definition of when two
utility functions are “similar at large wealth levels.” Suffice it to say that
there are a number of definitions in the literature and that our examples have
utility functions that are similar whatever definition we use (although as an
inessential matter they may not satisfy regularity assumed by the literature
at low wealth levels). Formal definitions are given in Section 2.

Example 1
Here we take utilities
¢t forC >0
={1-R 1
Uo(©) {—oo forC <0 @
and
(C-K)7 forC > K
= 1-R 2
1 (C) {—oo forC <K @

whereK is the translation anR > 0 is the shared risk-aversion paraméter.
Itis easy to verify that these two utility functions are similar in the sense of
Equation (26) given that thR’s are the same.

With ug and u; defined in this way, the solutions for the two utility
functions are closely related for reasons given by Cass and Stiglitz (1970).
By a simple change of variables that converts the problem for one utility

Formally, wherK is negative we want to relax the nonnegative wealth constraint in a way that does not
create an arbitrage so negative consumption can be permitted, for example, by somiesimitigfrability
condition or a looser lower bound on wealth. Addressing this purely technical issue in detail would take
us too far afield of our main purpose.
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Table 1
Distance from the turnpike: positively translated CRRA

Years to maturity
r 1 2 5 10 25 50 100

2% 96.12 9245 82.62 69.31 4353 2254 7.26
4% 9245 85.72 69.31 5041 2254 726 092
6% 88.99 79.68 58.83 37.82 12.56 255 0.12
8% 85.72 7424 5041 28.98 7.26 0.92 0.02
10% 82.62 69.31 43.53 2254 4.28 0.34 0.00

The table gives the percentage error from using the asymptotic value
instead of the optimum. For example, if it is optimal to invest 50%
of wealth in the risky asset, an entry of.Q0 in the table implies the
asymptotic rule would give 55% instead. The utility function is constant
risk aversion translated by 50% of initial wealth, thatks,= W,/2.

The entries in this table are not sensitiveutf not equal tar ), o (if not
zero), orR (if positive). The annual (real) riskless ratand the number

of years to maturityl are varied in the table.

function into the other we have that any solution has the property that

Wo — KE[é7]

— \nr 0T
Wo

relates the two consumptions. If we take be constant (as we will for the

calculations), the portfolio investment needed to achi€éveses only the
riskless asset, and the portfolios are related by

Cir=K+ 3

Wo — K e 't

0' ) 4
Wo ot T C)

O, =
since the discount factorB[&r] = e'T wherr is constant. By the turnpike
theorem (or by direct computation), the two portfolio strategies converge
asT increases. According to this result, the relative error for agent 1 from
using the asymptotic risky asset portfolig.t instead of the correct one,
defined to be

Bot:1 — O1t:7)/01t:7»

is given byK /(W€ T — K), independent oR and the parameters of the
risky asset return processes.

For power utility translated by 50% of initial wealth, Tables 1 and 2 show
the percentage error we would make in choosing what is optimal for the
power utility (as is asymptotically correct as the horizon increases) instead
of what is actually optimal. At reasonable real interest rates (2% or 4%),
convergence is probably too slow to make this a useful approximation.

Example 2

The class of examples based on translated power utility is very suggestive
that convergence tends to be slow. However, one weakness of this class of
examples is that the entire utility function is changed (at least somewhat)
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Table 2
Distance from the turnpike: negatively translated CRRA

Years to maturity
r 1 2 5 10 25 50 100

2% —-32.89 -3245 -31.15 -29.05 -23.27 -1554 —6.34
4% —-32.45 3158 —-29.05 -2510 -15.54 —-6.34 -0.91
6% —-32.01 -30.72 -—-27.03 -21.53 -10.04 —-2.43 -0.12
8% —-31.58 -29.88 -25.10 -18.34 —6.34 -091 -0.02
10% —-31.15 —-29.05 -23.27 -15.54 —3.94 —0.34 0.00

The table gives the percentage error from using the asymptotic value instead of the
optimum. For example, if it is optimal to invest 50% of wealth in the riskless asset, an
entry of —10.00 in the table implies the asymptotic rule would give 45% instead. The
utility function is constant risk aversion translated-b§0% of initial wealth, that is,

K = —Wp/2. The entries in this table are not sensitiveut@if not equal tor), o (if

not zero), orR (if positive). The annual (real) riskless rat@nd number of years to
maturity T are varied in the table.

by the translation. To counter this, Example 2 assumes power utility above
Wp and globally minimal utility (corresponding to the limit of infinite risk
aversion) below\p:

¢ for C > Wp
=1]1-R =
W) = {—oo forC < Wp ©
The first-order condition for an optimum implies that
_ [oEn7YR for st < Wg ™
C= {Wo otherwise 6)
wherei > 0 is chosen to satisfy the budget constraint
Wo = E[Cér]. (7)

This is a standard option pricing problém.

Table 3 shows how the portfolio choice for preferences of the form in
Equation (5) depends on the interest rate and time to maturity. Parameter
choices are motivated by the U.S. markets: .2 annually ange —r = .1
annually. The interest rateand time to maturityl are varied in the table.

The risk-aversion paramet&is chosen to make it optimal to keep exactly
half of one’s wealth in equities in the limit & — oco. Sincer should be

a real interest rate, a small value such as 2% or 4% is most relevant. Even
with the extreme assumption that preferences are identical ablpyvthe

2 Consumption is equal td, the payoff of a riskless bond, plas®R max(&; ¥~ — WoA YR, 0), the payoff

of a numberr=Y/R of call options with exercise pricérY/R on an asset payingr’l/R. Givena, the

value beforel of receiving&{l/R atT follows a lognormal distribution with constant variance, so pricing
is according to Black—Scholes. We compuitby a one-dimensional search for the value satisfying the
budget constraint.
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Table 3
Portfolio weights: CRRA aboveW;, and infinitely risk averse below

Years to maturity
r 1 2 5 10 25 50 100

2% 0.16 0.20 0.28 0.34 0.42 0.47 0.50
4% 0.25 0.31 0.40 0.45 0.49 0.50 0.50
6% 0.32 0.39 0.46 0.49 0.50 0.50 0.50
8% 0.37 0.43 0.48 0.50 0.50 0.50 0.50
10% 0.41 0.46 0.49 0.50 0.50 0.50 0.50

The table gives the proportion of wealth invested initially in the risky
asset. The utility function is taken to bexo belowW, and has constant
relative risk aversion@ —r)/o? aboveW,. The proportion of wealth

in the risky asset converges to one-half as maturity increases, but
slowly. The stock return has mear4+ 10% per year and standard
deviation 20% per year. The riskless rat@er annum and years to
maturity are varied in the table.

portfolio mix can be significantly different from its asymptotic value even
at as long a maturity as 25 years.

Example 3
Our final example on convergence assumes that risk aversion is zero (rather
than infinity) belowW. The utility function has the form

o for C > Wp
uy(C) = { Wt Wo~RWo — C) foro<C<Wo - (®
—00 forC <0

which is a power function abovéy, linear belowW,, and chosen to be
continuous and differentiable ¥%. The marginal utility in this case is given
by C—R for C > Wy, by Wy~ R for C € (0, Wp), and the rangeVjlp~ R, 00)
atC = 0. The first-order condition for an optimum implies that

_ JoEnYR for xgr < Wy °
C= !0 otherwise ©)
wherel > 0 is chosen to satisfy the budget constraint
W, = E[Cé7]. (10)

Again this evaluation is a simple option pricing problém.

3 While C is indeterminate in [0Wp] wheni&r = WO’R, the measurable selection does not affect the random
variable since this occurs on a set of states of measure 0, becagsehlaga Gaussian distribution.

4 Consumption can be viewed as the value of receiviriy ah asset wortlirér)~YR at T in the event the
asset is worth at lea®¥, and zero otherwise. This is a close relative to a call option on the asset. Since the
asset’s value beforE is easily seen to follow a lognormal process with constant variance, Black—Scholes
pricing obtains, and in fact the value of this asset is given by the first term (containing the stock price as a
factor) of the Black—Scholes call option pricing formula. Finding the corrémtolves a one-dimensional
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Table 4
Portfolio weights: CRRA above W, and risk neutral below

Years to maturity
r 1 2 5 10 25 50 100

2% 146 127 102 085 066 056 0.51
4% 137 115 087 069 053 050 0.50
6% 127 1.03 0.73 057 050 050 0.50
8% 117 091 062 052 050 050 0.50
10% 1.08 081 055 050 050 050 0.50

The table gives the proportion of wealth invested initially in the
risky asset. The utility function is taken to be linear belddy

and has constant relative risk aversigm2- r)/o? aboveW,.

The proportion of wealth in the risky asset converges to one-
half as maturity increases, but slowly. The stock return has mean
r + 10% per year and standard deviation 20% per year. The
riskless rate per annum and years to maturity are varied in the
table.

Table 4 shows how the portfolio choice for preferences of the form in
Equation (8) depends on the interest rate and time to maturity. Parameter
choices are motivated by the U.S. markets= .2 annually angh —r = .1
annually. The interest rateand time to maturityl are varied in the table.

The risk-aversion paramet&is chosen to make it optimal to put exactly
half of one’s wealth in equities in the limit as the horizon tends to infinity.
For reasonable parameter values, convergence can be very slow as before.

1.1 Failure of turnpike results for consumption withdrawal problems
Consider the following investment problem with consumption withdrawal,
written in terms of consumption (with the portfolio strategy implicitly sub-
stituted out).

Problem 1. Choose adapted and right-continuous;} to maximize
E[foT u(cy)etdt] subject to EﬁjoT g dt] = Wo.

The point of this section is to show that we cannot expect to have a
portfolio turnpike theorem in a consumption-withdrawal problem such as
Problem 1. The reason is that while consumption in the far future may
reflect growth to very large levels of consumption (depending on the relation
between the impatience parameétand the other parameters), consumption
at nearby dates reflects the shape of the utility function at relatively small
consumption levels, even as the horizon increases indefinitely. This result
is a reminder that when we talk about convergence of a portfolio strategy
at long horizons, this should be interpreted as a long horizon until the first
consumption withdrawal, not as a long horizon for the overall problem.

search for the zero of a monotone function.
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To make the point explicitly, take the translated power case with felic-
ity functionu(c) = (c — K)1"R/(1 — R), which is similar to the power
functionu(c) = ¢c~R/(1 — R) at large consumption levels. The cost of
maintaining the lower bound to consumptian= K is given by the annu-
ity formula E[fthogt Kdt] = (1—e"T)K/r, so we can solve for, — K
with the power felicity and initial wealtW, — (1 — e"T)K /r. But the
power function is homothetic and therefore has consumption proportional
to wealth. Therefore consumption in the translated power case is given by
K plus 1— (1—e"T)K /rWy times consumption in the power case, which
does not converge to the power consumptioil as co. Furthermore, the
risky portfolio investment is a factor 4 (1 — e "T)K /rW, times what it
would be in the power case, which does not converge to the power portfolio
choice either. These results depend only on a fixed interest rate, existence
of solutions, and some asset always having a nonzero risk premium (so the
power portfolio choice is not the riskless asset).

. Formal Model and Two Turnpike Theorems

In this section we present two turnpike theorems in continuous time. These
theorems are intended to synthesize and generalize existing results in the
literature. Both results look at preferences that are similar to some bench-
mark that may not be power utility as in the literature. Theorem 1 puts
very little restriction on security returns (beyond the underlying Brown-
ian model), while Theorem 2 assumes less regularity on preferences but a
strong assumption (i.i.d.) on security returns. With i.i.d. returns, we require
less regularity on preferences, since investing to timeith nonsmooth
preferences is fully equivalent to investing to an earlier time with smooth
preferences.

To begin with, we specify the market, which we shall refer to as the
standard Brownian markePortfolio returns are defined using the standard
continuous-time model of a complete securities market. Therd doeally
risky assets indexed bye {1, 2, ..., N} and a single locally riskless asset.
The underlying uncertainty is modeled by the complete filtered probability
space(2, (Fi)i=0, F, P) generated by aiN-dimensional Wiener process
{Z:|t €[0, co)} with independent components, and all processes are adapted
to (F)i=0. Conditional expectation with respect 6 will be denoted by
E:. The riskless asset bears an interest rate following a procasd local
returns to the risky assets are given by

urdt + ord Z;, (11

where theN-vector procesg gives the mean returns and the nonsingular
N x N matrix processr relates the random part of stock returns to the
underlying sources of noise. We denoteXy= oo’ the covariance matrix
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of returns® We define theliscountprocess by

t
ﬂtzexp(—/’ ndr), (12
=0

and therisk-neutral change of measupgocess by

t 1 t
ot = exp(—/ yidzZ, — E/ |yr|2d‘c> , (13
=0 =0

wherey; = o(l(,ut—rtl), andl is a vector of ones. By its definitiop, is
a local martingale; we shall assume

p isamartingale, (14

so that we may consistently define the risk-neutral probability mea3ure
by
EC[X] = E[aX] (15)

for any boundedr;-measurable random variableAs a last piece of nota-
tion, we shall define thstate-price densitprocess

& = pfr. (16)

We make the regularity assumption that fortadt has all moments, positive
and negative:

(Vn e R, t < 00) E[¢'] < 0. 17

This is a relatively modest assumption, which would followaindo ~* (1. —
r1) were assumed to be bounded processes (which would also suffice to
makep a martingale.) This completes the definition of the standard Brow-
nian market.

Within this framework, the wealth process of an agent who at time
holds the vecto#; of dollar investments in the locally risky assets satisfies

t
wy = Wo + (rrw-dr + 0, {(u; —r-dr + 0:dZ;}), (18
=0

whereW, is the agent’s initial wealth, and we require the nonnegative wealth
and consumption constraints

V)wy >0 (19

5 Nonsingularity ofr and an equal number of assets and sources of noise is a convenience. What is actually
needed to avoid arbitrage is that the vegter r 1 of excess returns must be in the span of the columns of
o to ensure that priced risk has positive variance. For Theorem 1, we also requirestiaild have full
column rank for completeness. (For Theorem 2, essential completeness, over the states distinguished by
security returns, is always true evervifdoes not have full column rank.) The theorems and proofs are
otherwise the same except using appropriate left-inverses or generalized inverses.
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and
C< wT, (20)

which rule out borrowing without repayment, doubling strategies, and re-
lated arbitrages. In terms of tligscounted wealth process

wy = Prw, (20

the budget equation [Equation (18)] takes the simple form

t
1Z}t = WO + / é;{(,u,-[ — r-[l)df + O'l-d Z-(}, (22)
=0

whered = B6. Applying It6’s lemma top,w; shows that the discounted
wealth process is @-local martingale.
A typical agent solves the following problem.

Problem 2. Choose C and adapteft;} to maximize E(C) subject to
Equations (18), (19), and (20).

The horizonT is fixed, but is thought of as extremely large, and where
the von Neumann—Morgenstern (vN—M) utility functiorof the agent is
convenient in the sense now to be defined. A utility functian(C, co) —
9 is said to beconvenienif it is strictly increasing and strictly concave, and
has a continuous first derivative, witt{C) equal to the right limit aC if
the limit exists.

To manage the boundary@t whether or not the derivative is finite there,
we will consider the derivative correspondence (or support corresponélence)
defined by

u'(C) = {m e R|(¥D > C)u(D) < u(C) + m(D - C)}, (23

where we identify the set containing a single element with the element to
allow us the usual notation at points of differentiability (which ar€a+ C
given our assumptions).

Here then is the main result of the article.

Theorem 1. Consider two agents 0 and 1 with convenient utilitigsand
u; respectively, with common initial wealthg\\each solving Problem 2 in

6 Using the derivative correspondence can handle interior points of nondifferentiability as well as boundary
points, although to simplify our theorems we restrict ourselves to utility functions that are differentiable
on the interiors of their domains.
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the standard Brownian market. Assume that the market grows indefifitely:
lim E[¢1] =0, (24)
T—oo

and that the horizon T is large enough that the initial wealth will satisfy
the subsistence requirements of both agents at that time, in the sense that
fori =1,0

Wo > E[§7]C;. (25
Assume that the two utilities are similar at infinity in the precise sétisat

U (©) _
C—oo U(C)

1, (26)

and moreover that the utilities have the uniform continuity property that for
all sequencesa b, — oo,
(b
B, qfr 4 On)
an u; (a@n)

1 27)

If wii.T denotes the optimal wealth process of agent i with horizon T, and
if 6i-.7 denotes the corresponding portfolio process, then for eaglOt

lim E®|wot.t — Wie.7| =0, (28)
T—o00 '
and

t
plim / (O1e;1 — QOT;T)/ET(QJ.T;T — Oor;7) dr =0. (29
T—oo Jr=0
(We think of theplim as being taken in actual probabilities P, but of course
this is equivalent to taking thglim in the equivalent probability measure
Q.)
Moreover,
plim suplwis;t — wes; 7| = 0. (30
T—oo s<t
The formal proof of this result is in the Appendix, and we provide a sketch
of the proof in the text, but first we comment briefly on the conditions
on preferences and specifically the uniform continuity condition, which

7 This condition is that the riskless discount factor (the value today of one dollar at maturity) goes to zero as
maturity increases. This is certainly valid if the interest rate is constant and positive, and it would appear
to be a feature of any reasonable term structure model.

8 This is the same as requiring that for each representation, the ratio of marginal utilities tends to a constant;
in the proofs we will take the constant to be 1 so that Equation (26) holds.
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is a very weak condition, especially compared with the conditions in the
literature. First note that the Inada condition

Jim u{(©) =0 31

follows directly from the uniform continuity property and strict concavity
of u;. Then, to see the sense in which Equation (27) is a uniform conti-
nuity property, for any convenient satisfying the Inada condition [Equa-
tion (31)] with correspondindgC, choose anya > log(maxC, 1)) and
define f : [a,00) — 9N by f(X) = logu’(€*). This function f is the
function we are plotting if we plot/’(-) with logarithmic scales on the
axes. Given Equation (31) and thatis convenient, this is a continuous
and strictly decreasing function and hence has a continuous inverse with
domain f[a, o0) = (—o0, f(a)]. Equation (27) is equivalent to uniform
continuity of f and f ~! on their domains, given the assumptions (positiv-
ity, continuity, strict monotonicity, and the Inada condition) already made
aboutu; .

The CRRA case of the existing literature is the special case of linear
f and f %, but Equation (27) also holds for a significantly larger class
of functions, including, for example, all twice continuously differentiable
functions whose relative risk aversion is bounded above and bounded below
away from zero, as well as allfor whichu’ varies regularly at infinity with
exponent—R < 0. In effect, regular variation would say that the utility
function looks similar to a power function at large consumption levels; for
our Equation (27) it suffices for the function to look similar to different
power functions in a bounded set of powers along different sequences of
large wealth levels. While we have stated that this condition must hold
symmetrically for both utility functions, it suffices to assume it for one
utility function, since it must then follow for the other given Equation (26);
since it is satisfied by CRRA preferences, a much stronger form of this
assumption has been assumed in all the previous literature. For the reader
wishing to know more about the connection between this assumption and
other forms of regularity, we offer the following lemma which is proven in
the Appendix®

9 On a minor technical point, Huberman and Ross assume the marginal utility function is regularly varying
with index —R, 0 < R < 1. They state that this is equivalent to relative risk aversion converging to
R as wealth tends to infinity. However, convergence of relative risk aversion is a stronger condition.
Consider a utility function defined for > C > 0 as an integral of the marginal utility functiaf(x) =
x~Rexp(—y sinx/x) for some constant. For y sufficiently close to zero, one can show thi4t< 0,
so the utility function is a strictly monotone, concave function. This marginal utility function is regularly
varying at infinity with coefficientR. This means that lig1,,, u'(@x)/u’(x) = aRforalla > 0
However, the coefficient of relative risk aversiorRst y cosx — y sinx/x, which does not converge to
Rasx — oo.

Itis important to note that the counterexample does not affect Huberman and Ross’s main result, which
assumed the weaker condition of regular variation.
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Lemma 1. Assume a convenient utility function satisfying the Inada condi-
tion [Equation (31)]. Then the implications

() = (i) = (i) & (iv) = (v) & (vi) < (vii)

hold among the statements (i)—(vii) defined below. As abowe, =£ log(U’
(exp(x))) and a is any number larger thdng(max(C, 1)).

(i) Relative risk aversion converges as wealth increases: u is twice contin-
uously differentiable witlivC)u”(C) > Oandlimcyo —CUu”(C)/U'(C) =
R* > 0.

(ii) Relative risk aversion bounded above and below away from zero: u
is twice continuously differentiable an@R, R)(VC e [exp(a), 00))(0 <
R < —CU(C)/U(C) < R).

(iii) Lipschitz condition on f and f1: (3K, K > 0)(Vx, y € [log(a),
00),y > X)(K(y —x) < f(x) — f(y) < K(y — x)). (Note that this
expression combines the Lipschitz conditions for f and diven that we
know f < 0.)

(iv) Declines in marginal utility are bounded above and below by power
functions:(3k, k) (YC € [exp(a), o0), YC' > C)(1 > (C/CHK > u'(C)/
u'(C) > (C/CHK).

(v) Uniform continuity of f and f: (Ve > 0)(38 > 0)(VX,y €
[a, c0))((IX —y| < 8) = (| f(X) — f(y)| < ¢)) and the analogous condi-
tion for f—1,

(vi) Equation (27) for all sequencea,}, {b,} taking values iffa, co).

(vii) Equation (27) for all sequencdsy}, {bn} — oo taking values in
[a, 00).

Proof. The formal proofis in the Appendix. One of the critical observations
in the proofis that when is twice differentiablef’(x) = e*u”(e*)/u’(e"),
which provides the link betweeh and the relative risk aversion. =

Now we sketch the proof of Theorem 1; the formal proof is in the Ap-
pendix. The proofisin six steps. The first and third steps are by now standard
[see, e.g., Karatzas (1989)], but we include them for completeness.

The first step shows that the budget constraint and nonnegative wealth
constraint can be collapsed to a “static” budget constr&fé; wt] < Wh.

The second step shows that the similarity and uniform continuity of
marginal utility functions imply corresponding properties of the inverse
marginal utility functions.

The third step constructs and characterizes the unique optimum for each
agent; as is well known, agent optimal wealth for horizonl can be
expressed agit.t = li(Ai7&7) for somerit > 0, wherel; is the inverse
tou.

Tlhe fourth step establishes convergence of the Lagrange multipliers that

characterize the optima; lifm, o, % =
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The fifth step shows the two wealth processes converge [Equation (28)],
and the last step deduces the remaining statements [Equations (29) and (30)]
from Equation (28) using the Burkholder—Davis—Gundy inequalities.

As announced in the introduction, we also state here the second main
result of this article, which is the continuous-time analogue of the result of
Huberman and Ross (1983), albeit with less smoothness assumed for the
preferences. This result assumes i.i.d. returns and a benchmark portfolio
that exhibits CRRA (as did Huberman and Ross), but the sense of similarity
[Equation (33)]is much weaker than the sense [Equation (26)]in Theorem 1.
One particular innovation in the proof is the smoothing of preferences by
randomization that comes from looking at a slightly different time horizon:
the portfolio choice for preferences for whicti(-) does not exist is the
same as the portfolio choice of a very smooth utility function at a slightly
shorter horizon. This proof technique allows us to construct a proof for the
very smooth case (based on Fourier inversion and exact formulas for the
wealth and portfolio processes) and then use the smoothing to extend the
proof to the general case when preferences are less smooth.

Theorem 2. Consider two agents in a standard Brownian market in which
the processes rq, and u are all deterministic, and in which the market
growth condition [Equation (24)] holds. Suppose that agent 0 has marginal
utility

uy(C)=Cc R C>0, (32

where R> 0 (corresponding to power or log utility), and that agent 1 has a
convenient utility function whose marginal utility varies regularly at infinity
with exponent- R, which is to say

(va > 0) lim Wu@c _ -r 33)

too UY(C)
The agents start with the same initial wealtly ®Whd solve Problem 2.

(i) Then for large horizons the optimal wealth processes are close in the
sense that forall t~ 0

lim E®io.t — wat]? =0, (3%

T

from which we deduce that we even have

lim EQ SUp(w]_s;T —wOs;T)z =0, (35)
T—o0 se[0,t]
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and convergence of portfolios

lim EQ |:ess sup|fis.T — 905;T|2} =0. (36)

T—oo se[0,t]

(i) The portfolio strategy and wealth process for agérto not depend
on the horizon T and can be written as

for = wor R T (e — 1ed) (37)

and
t
wor = Wog; /R exp(—(R‘l — 1 / (rs + KS/ZR)dS> (38)
s=0

where
Ks = (us — rs1) S (us — rsl). (39

Agent 1's portfolio proportions converge to agent 0's proportions in the
sense that for eacht 0

O1s: 00
ess sup|—=L — R 15 Y (us — rsl) %o, (40)

sef0.t] | Wis;T
in probability.

The proof of this result is also in the Appendix, but we give here some
comments on the conditions and an outline of the strategy of the proof.
The assumption of deterministicstandard Brownian market is the ana-
logue of the assumption of independent returns used by Huberman and
Ross in their discrete-time result; the returns in the deterministic standard
Brownian market are indeed independent over disjoint time intervals. We
cannot apply Theorem 1 because (for example) the utilitfor which
uy(x) = x~R/log(2 + x) satisfies Equation (33), but the comparison con-
dition [Equation (26)] needed for Theorem 1 fails. Itis not surprising that the
conclusions of Theorem 2 are stronger than those of Theorem 1, in view of
the stronger assumptions; however, we conjecture that the main conclusion
[Equation (28)] of Theorem 1 may remain true even if the utilities satisfy
only the less stringent conditions of Equations (32) and (33) of Theorem 2
rather than Equation (26).

The essential part of the proof is to notice that in the deterministic stan-
dard Brownian market, the expressiorr.t = |; (Ait&1) and the fact that
the discounted optimal wealth process iQanartingale allow us to write
the optimal wealth process as;.t = h(&,s, T), whereh(x,s, T) =
E[&sT] (XATEsT)] andést = &7 /&5 is the state-price density for purchase at
s of a claim atT. By carrying out the i"expansion of the optimal wealth
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process, we can identify the optimal portfolio, which we deduce must be
Os,1 = —&shx(&s, s, T)Es_l(,us —rsl). (41

Now if we formally differentiate the expression fomwith respect to, we
find that

ha(X,s, T) = E[A7E3 1 (XATEsT)]

_ —X_lE |:EST |(X)\T§ST) i| ’
R(l (XA1&s7))

where R(-) is the familiar risk aversion function defined to B¥x) =
—xu’(x)/u’(x). The form of agent 0’s optimal portfolio now follows (since
R is constant); the asymptotic similarity of the policies for the two agents
requires analysis dfy for agent 1, showing that the main part of the expec-
tation is due to sample paths for whi€{l (xA1£&s7)) is very close taR.

There is a technical point in the proof, namely that the formal differen-
tiation of h cannot lead to any expression of the form we have gifén
is not differentiableand we have made no assumption of differentiability
of 11. The way round this point is to introduce a smoothed version of the
utility of agent 1, smoothed in a cunning way so that the optimal behavior
of the original agent 1 and the smoothed agent 1 agree,dh [Che aux-
iliary results needed to deal with this are given separately as Lemma 2 and
Proposition 1.

(42)

3. Conclusion

Portfolio turnpike theorems are interesting conceptually because they de-
scribe the limiting behavior of portfolio strategies as the investment horizon
increases. Unfortunately their practical importance is limited by the slow
rate of convergence.

4. Appendix

Proof of Lemma 1 Recall that a utility functiow : (C, co) — R is said to beonvenient
if it is strictly increasing and strictly concave, and has a continuous first derivative, with
u(C) equal to the right limit aC if the limit exists.

(i) = (ii): Underthe assumption®(C) = —Cu’(C)/u’(C) is continuous ord, co)
and converges ab to R* > 0, which implies thaR(-) is bounded on the whole interval.
The smallest value is eith&* > 0 achieved in the limit a€ increases, or it is achieved
at some finiteC*. Sinceu”(C*) < 0 andu’(C*) > 0, the minimum is positive.

(i) = (ii): Since f'(xX) = expX)U’(expx))/u(Eexpx)) = —R(exp
(x)),0> —R < f/(x) < —R,andf Lipschitz follows from integrating this expression.
Similarly the derivative off ~1(x) is 1/(f’ o f ~1)(x), which is bounded betweenl/R
and—1/R, from which it follows thatf —* is Lipschitz.

(iii) < (iv): This follows immediately from substitution of the definition &f
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(i) = (v): Simply takes = ¢/K to prove uniform continuity off, or§ = ¢K to
prove uniform continuity off ~*.

(V) < (vi): Actually the “only if” part of Equation (27) is equivalent to uniform
continuity of f, and the “if” part of Equation (27) is equivalent to uniform continuity
of f~1. We prove the equivalence for the “only if” part of Equation (27) and uniform
continuity of f; the proof of the other part is identical. Letting = log(a,) and
yn = log(b,) and using the definition of , the “only if” part of Equation (27) is
equivalenttgy, —X,| > 0= | f (yn) — f (Xn)| = 0. But this is just uniform continuity
of f by definition of the limits.

(vi) « (vii): This equivalence follows because the continuityfoand f ~* implies
uniform continuity on compact sets. Therefore any failure of one of the limits must
happen on an unbounded pair of sequences, which can be taken without loss of generality
(by taking an increasing subsequence) to tensbt@onversely, if we have convergence
on all unbounded pairs of sequences tendingstauniform continuity on compact sets
implies convergence for all sequences. n

Proof of Theorem 1 The proof contains the six steps described in the text.

Step 1: Feasible consumption We will omit the subscripts for the agent and” for

the horizon in this part. Given the horizdn the set of random terminal consumptions
C consistent with Equations (18) and (19) is the set of nonnegative random vafables
satisfying

E[6rC] < Wh. (43

The necessity of Equation (43) follows from applying'$tfemma tas; w; [as defined in
Equations (16) and (18)] and observing that it is a local martingale and by nonnegativity
therefore a supermartingale. Consequently, by Equation Ef@},C] < E[&rw] <
E[&wo] = Wp. Conversely, if nonnegative satisfies Equation (43), sety = C +

(W — E[£7C])/E[&7]. ThenE[&rwr] = W, LetWo+f ¢.d Z, be the predictable
representation of the martingdié = E;[&rwt], whereE; |nd|cates expectations based

on information Zs for 0 < s < t) known att. Setw; = & *M,. Then Equations (20)

and (19) follow from Equation (43) and positivity 6f andw and6; = & *(c") ¢ +

w T N — rd) satisfy Equation (18).

Step 2: Inverse marginal utility functions. Agenti’s inverse marginal utility function,
U I (T ¢ for x < lime,c, U (C)
li(x) = { o otherwise “9
will play an important role in the analysis. Note thgtmay be a correspondence but
not a function, since iflirmgi U (C) < oo, U{(C)) = [Iimqgi u'(C), oo). However, by
positivity, continuity, and monotonicity ai; and the Inada condition [Equation (31)],
Ii (x) is a well-defined and continuous function for all positiueEquation (27) on the
marginal utilities implies an analogous property for the inverse marginal utilities: for all
sequences,, ¥ | 0,

OR) g Y g, 45)

Ii (Xn) Xn

Given monotonicity ofi| and the Inada condition [Equation (31)], this follows immedi-
ately from Equation (27) if we sét, = |; (y,) anda, = I;(X,). And, given Equation (45),
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Equation (26) implies a similar condition on inverse marginal utility functions:

()
lri’g lo(X) “9
To see this, note that
L0 lo(Ug(11(X)))
lo(X) lo(X)
u’ (11(x))
|°(u9(|1(x>)x)
= —F 47
lo(X) “7)

As x | 0, ug(l1(x))/uj(11(x)) converges to 1 by Equation (26), so the expression in
Equation (47) converges to 1 by Equation (45).

An additional implication of Equation (45) is thatx) grows no faster than a power
of x asx | 0. Specifically, Equation (45) implies that there exists 1 ands > 0 such
that

I
(Vx € (0,¢),y € (¥X, X)) % =<
Otherwise there would exigf 1 1,%, | 0,andy, < y,/X, < 1suchthat (y,)/1 (X,) >
e > 1, which would contradict the “if” part of Equation (45). This implies thatfot ¢,

100 = 1(e) 'I((y;;) 'I((’;zj)) I'(;yNNji) | (';E)S) < 1(e)eV,
whereN is defined by
eyt < x < gyN.
This, in conjunction with monotonicity, yields
(Vx> 0) I (x) < A+ BxY/'°97 (49

for some constanté and B, that is,| (x) is bounded by a constant plus a power times
a constant.

Step 3: Existence and characterization of unique optimal demandAgain we omit
subscripts indicating the agent and the horizon. The optimal consumption for an agent
maximizesE u(C) among random variables bounded belovisubject to the constraint

of Equation (43). The first-order necessary conditions for this optimization are

3xr>0) C =1(xr&7) (49

together with the constraint of Equation (43) as an equality. To see that this is sufficient
whether or not lirg,c u’'(C) is finite, note thak.&y is always a member of the derivative
correspondence’ (I (A&7)) and therefore for any other random consumptidsatis-

fying the budget constrairE[D&r] < Wo, Eu(D) < E[u(l (A&7)) + A&r(D — C)] <

E[u(l (A&7))], where the last inequality follows from the budget constraints. To verify
thatE[u(l (A&7))]is finite, setD = W/ E[£1] to compute a lower bound, and substitute
Equation (23) a€ = C+1to apply Equations (48) and (17) to compute an upper bound.
(As with other variables) varies with the agent and horizon, but we are suppressing
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this dependence.) Therefore the problem reduces to one of fiadingh tha®
Eler! (1)) = Wo. (50)

Sincel (x) is bounded by a constant plus a power times a constants aubsesses
all momentsE[&1 | (A&7)] < oo for all A, and by Lebesgue’s monotone convergence
theorem E[&1 | (A&7)] is a continuous function of.

The functioni — f(1) = E[&1] (A&7)] maps (0, oo) into (CE[&7], 00), is un-
bounded (because of the Inada condition), and is strictly decreasing in the open interval
where f > CE[&r]; therefore the assumption that wealth is greater than the present
value of subsistence consumption [Equation (25)] implies that there exists a unique
satisfying Equation (50).

To summarize, there exists a unique optimal consumption given by Equation (49)
wherex is the unique solution to Equation (50). This optimal consumption is generated
by the portfolio policy described in the derivation of Equation (43). The uniqueness
of the portfolio policy follows from uniqueness of the predictable representation and
nonsingularity ok

Step 4: Convergence of Lagrange multipliers Let;r denote the Lagrange multiplier
described in the previous step for agemtith horizonT. We will show that

A
lim 2 — 1. (51)

By symmetry, it suffices to show that limiaf ., Aot /217 > 1.
Suppose to the contrary that liminf ., Aor /211 < 1. Then there exist$ < 1 and
an unbounded sé&k of terminal times such tha¥T € 7)Aor /A7 <38.ForT € 7,

Wo E[&r lo(Aoré7)]
E[&r lo(8AaTE7)]

E[&rlo(8A1TéT) @ AatéT < €], (52)

=
=

for anye > 0, where the notatioi[z : A] denotes the integral of the random variable
zover the eveni.

We claim that Equation (45) implies the existenc& of 1 ande > 0 such that
lo(8%) -
lo(X)

To see this, note that otherwise there would exjs{ 0 andk, | 1 such that

(¥x € (0, &))

- lo(8X%n) -«
T lo(Xn) T

which would contradict the “only if” part of Equation (45).
Equation (46) guarantees that by takiagufficiently small we can ensure that

nid L,

10 This omits one degenerate case, corresponding intuitivelytaso, in whichCE[&r] = W, andu(C) is
well defined. In that case, the optimum is the only feasible strategy, for which consumpiioRas the
turnpike resultE[&7] tends to O as maturity increases, and we have that the degenerate case never arises
for sufficiently largeT .
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lo(X)/11(x) > 1//k, SO we have

lo(6%)

(Vx € (0, ¢)) oo =

Vi > 1.

Applying this to Equation (52) gives

Wo > VkE[&rli(hrér) 1 Aarér < €]
= VikWo — VKkE[&r l1(Aitér)  Aarér > €]
> VKW — Vi l1(e)E[ér : Airér > €]
> VW — Vi l1(e)E[£7]
— JkWp,

where we have also used, successively, Equation (50), the monotonicity tife
nonnegativity ofér, and Equation (24). The contradictidiy > /kW, shows that
liminfr_ o Aor /A1 > 1 and by symmetry that lif., o Aot /AT = 1.

Step 5: Convergence of wealth processedn this step we will establish Equation (28).
Recall from steps 1 and 3 that the optimal wealth process of agent

witt = & 'EdEr L (Mt ED)], (53
so Equation (28) will follow (by the conditional version of Jensen’s inequality) from
T“m E[érllo(rorér) — 11(Marén)|] = 0. (59

Consider any > 0. By Equation (45), there exisés< 1 ande > 0 such that

-1
(Vx € (0, ¢)) o8 ) lo(6X) — 1‘ <

lo(X) lo(X)

Otherwise there would exigt, 1+ 1 andx, | 0 such that either

—l‘gyand

lo(8; %)
IO(Xn)

lo@%)
IO(Xn)

-

1‘>y0r

and either case would violate the “if” part of Equation (45). By Equation (46), we can
takee sufficiently small that

11(X)
(xe 00 [ - 1\ <.
SO
lo(671x) ) 10(8%) )
(vx € (0, ¢)) .00 > (1-y) and 00 <A+ (55

By step 4, there exisf§ such that

A
VT > T s <= <571,
AT
Wheniitér > &, we have

0 < l1(A7é7) < l1(e),

186



Portfolio Turnpikes

forT > To,
0 < lo(koréT) < l0(B8).
Hence,
E[&r11(Aarér) —lo(horér)| - Aarér = €] < (la(e) + lo(88)) Eér — O,

asT — oo, by Equation (24).
Whenx = r1é1 < ¢ andT > Ty, we have from Equation (55) that

lo(AoTéT) - lo(671x)

1—9)?

hoo - Lo S OGTY
and

lo(hotér)  10(6%) 2

Lo = oo S
Therefore

lo(AotéT) 2

1 1 -1

L Gorér) ‘5( )

It follows that

E[&rlli(Aarér) —lo(horéT)| & Aarér < €]
(v?+2y) E[&r11(arkr)  Aarér < é]
()/2 + 2J/) Wb,

using Equation (50) for the last inequality. Singean be taken arbitrarily small, this
establishes Equation (54).

IA

IA

Step 6: Convergence of portfolio processesFix t. From steps 1 and 3 and the defi-
nitions, the procesgiwii.t, 0<t <T, is aQ martingale for eachandT and is given
by
t
Brwit =Wo+ [ B.b],.70:dZ2, (56)

=0

wheredz8 = dz + os (s — rs1)dsis aQ Wiener process. Hence
Ayt = Br(wy,T — wor,T)

is aQ martingale, and its quadratic variation from Ot tis

t
[AT]t = / lgf(elr:T - HOT;T)/ET(G:LT;T - 00'[;1—) dt~ (57)
=0

It suffices to show that this quadratic variation converges in probability tol0-as co,
because

t
/ (elT:T - BOT;T)/ET (elr;T - GOI:T) dt < [AT]t SUp ‘8;27 (58)
=0 7€[0,t]

where the supremum is finite sinfds a continuous and positive process.
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Let Af; denote sup,|A.r|, and consider anyp < (0,1). The Burk-
holder-Davis—Gundy inequalities [see, e.g., Rogers and Williams (1987), 1V.42] yield,
for some absolute constary,

E (Ar]0"?) < GE[(A7p)P].
Convergence of4+]; to 0 in LP2(Q, F, Q) will imply the desired convergence in
probability (in Q and therefore irP), so it suffices to show thak; ;. converges to 0 in
LP(R2, F, Q). This will also achieve the proof of Equation (30).

Next, for eachil > t anda > 0 we apply Doob’s submartingale inequality [see, e.g.,
Rogers and Williams (1994), 11.70.1] to th@ martingaleAs.t, s € [0, t]. This yields

Q(Ayr > a) <a*EAurl, (59
and hence in particular
Q(Air >a) < @'E%Aur) AL

wherex A 'y denotes the smaller afandy. Combining this result with the fact that for
any nonnegative random variab¥eand positivep,

EQXp:/ paPlQ(X > a)da,

=0

we have that

EQ[1AL 7] / paPlQ(A* > a)da
a

=0

IA

/ paP (@ E[|A D) A Dda
a=0

- TlpEQ[|A1;T|]p~ (60)

In conjunction with Equation (28), this implies that, for any increasing unbounded
sequencd, the sequencAf;}, T € 7 must converge to 0 ibP(Q, 7, Q), and we
are done. u

Proof of Theorem 2 Existence of a unique optimum follows from the first part of
Theorem 1. Uniform continuity of Equation (27) follows from our regularityudeither
Equation (32) or (33)], and existence of all moment§ ahd the martingale change of
measure follow from the boundedness on compact intervals fis — rs|, and|oS%|.

The rest of the required assumptions are the same.

Proposition 1 (below) shows that we can restrict attention without loss of generality
to utility functionsu,, satisfying the smoothness properties (i)—(iv) of Lemma 2 (also
below), and we will take them as given from now on.

Independence of returns over time;{ oy, andr, nonstochastic) implies that the
conditional distribution o+ /& conditional onZ; is the same lognormal distribution
as the unconditional distribution. Therefore dropping the label for the agent for the time
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being, Equation (53) implies we can write the wealth process as
Ws,T = h(é& s, T) (61
where
h(x,s, T) = E[&t] (XA1&s7)] (62

andést = &7 /&, is the state-price density for purchase ata claim afT . The bound (iv)
in Lemma 2 on the derivative df and lognormality ok /&5 allows us to differentiate
under the expectation to obtain

he(x,s, T) = E[ArEZ] (XA1Es7)]

R I (XA1é&sT)
- E[EST R(I(xszsT»]'

In the risk-neutral probabilities, the discounted wealth process is a local martingale,
and from Equation (56) itis

(63)

d(ﬂsws:T) = ,Bseé;TUSd ZSQ’ (64)

whereas expanding discounted weglthws.+ = Bsh(&s, s, T) using 16’s lemma and
the various definitions [Equations (16), (12), (13), ahe:= oo'] yields

d(Bsws,1) = —Bshx(&s, S, T)Es(us — I’Sl)/Es_lan ZS. (65)
Matching coefficients, the portfolio process must be essentially
07 = —Eshx(&s, S, T)Z5 (s — 1s1). (66)

For agent 0, whose relative risk aversion is constant and equd) Equations (63)
and (61) imply that-£shy (&, s, T) = R~*ws T, and we obtain the standard expression
of Equation (37) for the reference portfolio process. The form [Equation (38)] of the
reference wealth process also follows easily.

Shortly we will prove Equation (34), but first let us explain how the remaining
conclusions of the theorem will then follow.

Sincep; (wy. T — wo.T) is aQ martingale, Doob’d 2 martingale maximal inequality
[Rogers and Williams (1987), Lemma 11.31] and Equation (34) imply that

s<t

EC [supﬂf(wn;r - wm;T)2i| I%o, (67)

and sincess is nonstochastic and bounded below away from zero oi},[Equation (35)
follows immediately.
To verify Equation (36), first note from Equation (63) that

£2(hk (g, 5. T) — hQ(&, 5, T))

l1(A17é7) lo(AoréT)
= —E, _
[gT <R1<|1<A1T5T>> Ro(lo(xmsm)]

is a P martingale and thereforgst = Bs&s(hi(&, s, T) — hO(&, s, T)) is a Q mar-
tingale [as will be important because @ close connection to the portfolio choice in
Equation (66)], and therefore by Jensen’s inequaipZ ; is nondecreasing is. This
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provides the initial inequality in the following, which is also based on Equations (65)
and (66), the definition of;, and the assumptions thatis nonsingular angk — r1is
nonzero:

t+1 t+1
(E%EIT)/ ksds < E2 [ ¢2rksds
S:

=t s=t

t+1
< E° P2 isds
s=0 '
t+1
= E° BZ(OrsT — Oos7) Ts(O1s,1 — Oos,7)dS
s=0
= EQBA (Wit — worrsT)? (68)

Given Equation (34) is true for arbitraty(including t + 1), the last expression
must go to zero a§ increases. But the first expression is jER[¢2] multiplied by a
positive constant. Sinag; 7 is a martingale, Doob’s 2 martingale maximal inequality
(cited above) implies tha ° sup, ;) #2; also tends to zero & increases. The result
[Equation (36)] follows from the definition o, Equation (66), the fact thads is
nonstochastic and bounded below away from 0 qu][Gnd the fact that — r1| and
|o~1| are nonstochastic and assumed bounded ai).[0

The convergence of portfolio proportions [Equation (40)] follows directly from Equa-
tions (35)—(38) and the equivalence®fand Q for random variables measurable with
respect tar;.

We have left only to verify Equation (34). We do this by bounding

t

EQBZ(wit — wat)? = EQ [ BZks(Es(h} — hO) (&, s, T))?ds (69)
s=0

using the following bound. Fix arbitrary > 0 and choos® such thatC > D implies
|R1(C)~t — R7Y| < ¢ [as we can by (i) of Lemma 2]. From two parts of Equation (63),
the arguments used to derive them, and the bound (iv) in Lemtha 2,

Ix(hy = hD(x, t, T
|E[X§t2-r)»1T|i(X)»1T€tT) + R I (XAg7&er)  la(Xhar&er) < D]

l1(XA17&i7) [1(XA1T &)
-k - o D
[stT { Ri(l1(XA17&7)) R } 100t ér) = ]]

— R E[&r (Ii(XAaréir) — |0(X)\0T€tT))]|

|E[XEZ Aar (Xhar&r) A (L + (Uy(D)™)]| + | R E[& D] |
+ [E[&r i (xAar&rel |+ R [hx, 1, T) = ho(x, £, T)|

= AL+ (D) ")E[&r] + RIDE[&r] + eht(x, t, T)

+ RYhi(x, t, T) — ho(x, t, T)|

A(L+ (U(D))™")E[&r] + RDE[&7] + eh®(x, t, T)

IA

IA

11 Recall the notatiorE[x : y] is the same integral a&[x] except with the domain limited to the set on
whichy is true.
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+ (R +o)lh*(x, t, T) = h(x, t, T)|
< e+eh’x,t, T) + (R +o)|h*(x, t, T) — h°(x, t, T)], (70)

for T sufficiently large [by Equation (24)]. With Equation (69) this implies that

Y(t) = EQBE(wiT — wot)?
t
EQ [ B2ks(e +eh®(&s, s, T)
s=0
+ (R +e)|ht(E, s, T) — (&, s, T))%ds
t

= E° Biks(e + swost + (R + &)|wisT — wost])?dS
s=0

t
4 / Kks(R7H+ &)y (s) + B2e® + pZe*E°[wig 1 ]ds. (71)
s=0

IA

IA

Gronwall’s lemma [Dieudore{1969), 10.5.1.3] implies a bound @r(t) that can be
made arbitrarily small since > 0 is arbitrary, given the form [Equation (38)] afy
and the uniform bounds o (inherited from|o —*| and|u — r 1) andgs on [0, t]. ThIS
completes the proof.

Here is the lemma that tells us that there is a smoothed version with nice
properties. There are many ways of performing the smoothing; the particular choice
here is one that is useful in Proposition 1 which is used in the proof of Theorem 2.

Lemma 2. Suppose the von Neumann—Morgenstern utility function u is strictly increas-
ing and strictly concave and that the marginal utility is regularly varying at infinity with
index—R for some R> 0, thatis,(va > 0) limc, U'(@C)/u’'(C) = a~R. Let | be the
inverse of u(as before). Fixx > 0 and define

Tx) = /oo exp( y ) I(xe‘/)m (72

and letli(C) be any integral of the inverse of Then,
@)1 eC>,
(i) T(x)/1(x) > exp@R?/2) as x | 0,
(i) R(C) = —C0"(C)/u'(C) - Ras Ct oo, and
(ivy @A >0,y >0 0<T'(X) <xTAA+x7).

Proof. The proof builds on basic properties of regularly varying functions given by
Bingham, Goldie, and Teugels (1987), henceforth BGT. Suicis decreasing and
regularly varying with index-R, it follows that| is decreasing and regularly varying
with index—1/R at the origin (by the definitions in BGT, section 1.4.2 and the inversion
theorem 1.5.12, in which the actual inverse is an asymptotic inverse). Most of the results
in BGT are stated for regular variation around infinity; to apply thenh they must

be translated through the definitions in BGT, section 1.4.2. Specifidahty,regularly
varying of index—1/R at the origin is equivalent tb(1/x) regularly varying of index

1/R at infinity.
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To show the existence of certain integrals, it will be useful to note an implication
of Potter’s bound (BGT, Theorem 1.5.6.iii) and positivity and monotonicity.dfhen
there exists¢* such that for aly > 0 and allx, 0 < x < x*,

~

Iy YR
0= 150 < 2max{(y/x) " 1}, 73

where the first argument of the maximum comes from Potter’s bound and the second
argument comes from monotonicity bf In particular, settingc = x* implies that for
ally > 0,
0= 1(y) <20 x)(y/x) R+ 1). (74
(i) We can rewrite Equation (72) as

|~(><)=/ exp(—(y — log(x))?/2a) | (&/)dy/+/ 2, )

oo

and therefore the result follows from Equation (74).
(ii) By Equation (72),

T [ el (xe) dy 26
lw‘ﬂwe 0 v2ra 7o

By regular variation, limo | (x&)/1 (x) = e7¥/R, and therefore the integral of the point-
wise limit of the integrand g/ 2R Substituting in the bound of Equation (73) implies
the integrand is integrable uniformly i, so by Lebesgue’s dominated convergence
theorem, the limit of the integral is the integral of the limit.

(iii) Since R(c) = —dlog(u'(c))/dlog(c) andT is the inverse ofi, R(I(x)) =
(=dlog(l (x))/dlog(x))~* = (=xI"(x)/1(x))"L. Therefore we want to show that as
x } 0 (sol (X) 1 00), Ris the limit of

- -1
R(x) = (M) . (77
FCO/1(X)

We know from (ii) that the limit of the denominator &/2%, so we need to show that
the numeratopV (x) tends to—e*/2R" /R asx |, 0. From Equation (75),

X

Nx) = d / exp(—(y — 10g(x))?/20)1 (€)dy/v/ 2

“Tooax ),

- X / Y1009 s —(y—log(x0)?/20) 1 (€')dly/v/Zra
1 (X) Xa

—00

= —f Xexp(—yz/Zoe)l(Xey)dy/«/Zna. (78)
o X [ (x)

192



Portfolio Turnpikes

By regular variation, lim,o | (x€¥)/1(x) = e7¥/R, and therefore the integral of the
pointwise limit of the integrand ig*/2* / R. Substituting in the bound of Equation (73)
implies the integrand is integrable uniformlyxnso by Lebesgue’s dominated conver-
gence theorem, the limit of the integral is the integral of the limit.

(iv) Since the numeratol (x) = —xi’(x)/1 (x), Equation (78) is equivalent to

"(x) = — L) yexp( y/2a) dy/«/ (79

xa |
The integral can be bounded independently &y substituting Equation (73) into the
integrand, and the result follows from Equation (74).

Proposition 1. Under the assumptions of Theorem 2 and given fixed t, the wealth pro-
cesses and optimal demands for ak g0, t] and all T sufficiently large are the same

as for a different problem satisfying the same assumptions and for which the utility
functions satisfy additionally the smoothness properties (i)—(iv) of Lemma 2.

Proof. The intuition of the proof is that the stochastic evolutiorsamplies that the
implied preferences at a point in time before the end are smoother than the preferences
at the end. To make the smoothing comparable for diffeferit is easiest to consider
the smoothing over some fixed time interval aftéwe consider specifically the interval
[t, t + 1]) rather than an interval ending &tthat might not be directly comparable with
an interval ending at a differeft.
We take as given the (nonstochastic) processeg.far, ando, and will specify
new (nonstochastic) processes’, andas, and a new utility functioni; preserving the
properties of preferences in the theorem but also satisfying the smoothness properties
()—(iv) of Lemma 2.
Definev = f:{l(us —151)' 2 (s — rs1)ds, which is equal to the variance of
log(&41/&) in the original problem. In the new problem we will talketo be an integral
of the inverse of
. *© dz
P(x) = / &l (x&)e 1 —— (80)
- Ve

TV

It is easy to verify (by completing the square in the exponent) ittt = /21 (xe"),
wherel is defined in the statement of Lemma 2, and therefoirherits the required
smoothness properties (i)—(iv) from

For the return processes we want to make the noisg pius the noise already
embedded intd the same as the noisegnso that for allT > t + 2 and alls € [0, t],
log(é7/&s)) has the same distribution ast Iog(éT/gs) wherez ~ N(0, v) is drawn
independently of. We will also make sure thgt andé; are identical fos € [0, t]. All
this will ensure that the Lagrange multipligr, as in Equation (49), and consequently
the wealth process, as in Equation (53), and the implementing portfolio process are the
same in the new problem, and we will be done. To accomplish this we define

fs=rs, (81
A _ )Ostti2)2 forse [t, t+ 2]
Os = {as otherwise ’ 82)
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and

(83

fis = rs + %Z(Mmuz)/z —Istt422) forse[t,t+2]
A 7 otherwise

Note Added in Proof

During typesetting, we learned of a related paper by Jin (1998) that has
turnpike results for consumption withdrawal problems. Jin’s results would
seem to be inconsistent with our examples in Section 1.1. It seems that the
explanation of the discrepancy is a hidden assumption in Jin’s proof: the
finiteness of the suprema in the definitionsMf . and M, . toward the
bottom of page 1011 in Jin’s article is a strong condition that certainly does
not have to hold in general. Itis related to regular variatiow of andU’—*

at infinity (corresponding to small wealth levels, since marginal utilities
are decreasing), not at zero as assumed in the definition of theltlass
page 1007. Because of this hidden assumption and Jin’s assumption that the
pure rate of time preference is zero, the asymptotic regime considered by
Jin has ventow consumption levels approaching zero for any fixed initial
time interval. This feature is qualitatively similar to our assumption of no
consumption withdrawal before maturity: in each case the turnpike theorem
relies on having no significant consumption withdrawal in early years.
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