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Abstract

A model is useless if it cannot be taken to data, so it makes sense to
begin modelling by looking at the data. Simple exploratory techniques
can quickly reveal stylized facts of the data, and may suggest mod-
elling hypotheses, but it is important to be cautious before jumping to
conclusions, and to keep an open mind about other possibilities. This
paper considers some examples related to asset returns.

1 Models of asset returns.

If St denotes the price of an asset at time t, then the celebrated Black-
Scholes-Merton model proposes that S evolves as

dSt = St(σdWt + µdt), (1)

where W is a standard Brownian motion, and σ > 0, µ are constants.
Crucially for derivative pricing, when we work in the pricing measure we
have that µ is equal to the riskless rate r, an observation which goes back
at least to Merton & Samuelson [4]. The Black-Scholes-Merton model has
a number of strengths:

(S1) it is simple and tractable;

(S2) there is only one unknown parameter, σ ;

(S3) it generalizes naturally to many dimensions;

(S4) passing from continuous time to discrete time and back is easy and
natural.

Property (S1) allows many closed-form options prices to be obtained, and
makes numerical computations easier. Property (S2) is the basis of the
entire technology of implied volatility. Property (S3) is achieved if we let the
vector of log-prices of many assets be a Brownian motion with constant drift
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and covariance. For property (S4), the discrete-time analogue of the Black-
Scholes-Merton model is a random walk, and passing back to continuous
time is in effect just Donsker’s theorem. This is important because any
numerical computation has to be done with finite statespace and finite time
set. Set against these strengths are some folklore weaknesses, notably:

(W1) volatility is not constant;

(W2) returns1 are not Gaussian.

We see the first of these from the plot of any asset returns; for example,
Figure 1 shows the plot of returns on IBM stock. The right-hand panel
is a diagnostic plot of the cumulative sum of squared returns. If returns
were IID, then this plot would be a straight line, but it plainly is not. To

Figure 1: IBM returns.
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show that log returns are not Gaussian, we commonly do a q-q plot, Figure
2. If returns were IID Gaussian, this plot would be a straight line, which
visually appears not to be the case. But we need to be cautious - we already
know from Figure 1 that returns are not IID, so a fortiori they are not IID
Gaussian - Figure 2 tells us nothing useful. Attempts to model assets as log-
Lévy processes relax the Gaussian assumption of the Black-Scholes-Merton
model, but retain the obviously wrong assumption of IID returns.

1We shall speak of returns instead of the longer but more precise log returns.
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Figure 2: q-q plot of IBM returns.
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2 Alternative asset models.

The Black-Scholes-Merton model is an excellent first choice, but we see that
it is not the whole story, so we need to consider other modelling directions.
Sadly, there is no consensus about what the next modelling family should
be. Among widely-studied choices, we could list:

1. log-Lévy models (which we know do not fit the data);

2. stochastic volatility models such as Heston, Bates, ...

3. local volatility models, popularized by Dupire and others

4. rough volatility models, promoted by Gatheral and co-workers

5. regime switching models, as considered by Elliott and others

6. GARCH models, the favourite of econometricians.

Before investing too much intellectual capital in any particular alternative
class of models, it is well worth considering to what extent the strengths
(S3) and (S4) of the Black-Scholes-Merton model survive: if we lose (S3)
then the alternative class can only deal with one asset at a time, and if we
lose (S4) then numerics or interpretation will be problematic. The econo-
metricians’ favourite, GARCH, fails spectacularly on both counts. But the
purpose of this paper is not to survey and argue the strengths and weaknesses
of various alternative asset models, rather the purpose is to draw attention
to the need for care in exploration of data; and to illustrate this, we now con-
centrate on the fourth model in the list above, rough volatility models. This
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topic is relatively recent, but has been received so enthusiastically that it now
has its very own website https://sites.google.com/site/roughvol/home,
and the seminal paper [2] of Gatheral, Jaisson and Rosenbaum boldly de-
clares in its title that ‘Volatility is rough’. Let us inspect the evidence for
this claim.

3 Rough volatility.

The empirical evidence for rough volatility is based on daily estimates of
realized variance made available via the website of the Oxford Man Insti-
tute https://realized.oxford-man.ox.ac.uk. The reader should visit
for more detail on the methodologies used to calculate these estimates from
high-frequencey data; suffice it to say that various procedures are used, and
produce quite similar estimates. Letting σ̂t denote the estimate on day t of
the annualized volatility of the asset, what Gatheral et al. calculate in [2] is
the quantity

m(q,∆) ≡ N−1
N∑
t=1

| log σ̂t+∆ − log σ̂t|q (2)

for a range of values q = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and lags ∆ ∈ {1, . . . , 50}.
Their remarkable finding is that apparently

m(q,∆) ∝ ∆αq (3)

for some α which is not the same for all the indices considered in [2], but
is generally in the range [0.07, 0.20]. This is remarkable, because for any
diffusion-based model we would expect that (for short lags at least) α = 0.5,
from the Brownian scaling. This surprising finding is the basis of the claim
that volatility is rough. Moreover, the increments of log σ̂t appear to have
Gaussian distributions. The plots in Figure 3 show these findings. In the
top left panel is the daily estimates of volatility, in the top right panel is
the cumulative sum of squared changes in volatility, in the bottom left panel
are q-q plots of the increments in log σ̂ over six different time lags, and in
the bottom right panel we have the plots of logm(q,∆) against log ∆ for
six different values of q, with best-fit lines superimposed. The slopes of the
best-fit lines are proportional to q, which leads Gatheral et al. to propose
that Xt ≡ log σ̂t is a fractional Brownian motion (fBM):

Xt+∆ −Xt ∼ N(0, v∆2α) (4)

for some v > 0. Fractional Brownian motion has long memory, which is a
contentious property; as Gatheral et al. state in their paper, ‘The evidence
for long memory has never been sufficient to satisfy remaining doubters
such as Mikosch and Starica.[3]’. One of the main points made in [3] is
that when we calculate the ACF of a time series, the interpretation of what
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Figure 3: Daily volatility estimates of the S&P500

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

765432
V

o
l 
e
st

im
a
te

s

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

C
u
m

su
m

 o
f 

sq
u
a
re

d
 r

e
tu

rn
s

4
3

2
1

0
1

2
3

4
3210123

qq
 p

lo
ts

La
g
 =

 1
La

g
 =

 2
La

g
 =

 5
La

g
 =

 1
0

La
g
 =

 2
5

La
g
 =

 5
0

1
0

1
2

3
4

5
lo

g(
∆

)

3
.5

3
.0

2
.5

2
.0

1
.5

1
.0

0
.5

0
.0

logm(q,∆)

lo
g
m

(q
,∆

) 
a
g
a
in

st
 l
og

(∆
)

q
=

 0
.5

q
=

 1
.0

q
=

 1
.5

q
=

 2
.0

q
=

 2
.5

q
=

 3
.0

P
lo

ts
 f

o
r 

S
P
X

2

5



we see presumes that the series is stationary2, and departures from this
assumption tend to produce the appearance of long-range dependence. In
this instance, it may not be an issue; from the top right panel of Figure 3
we see the cumulative sum of squared differences growing linearly, so this at
least is consistent with stationarity.

The fBM model certainly appears to fit the data well, but there are two
main objections to it, which are the same objection, considered operationally
and theoretically:

1. the model is highly non-Markovian; in order to predict the future of
X, we need to know the entire history;

2. what economic story could we tell that would result in a model where
we need to know the entire history in order to predict the future?

In any case, since the value of α varies from one index to another, there is
clearly no universal law applicable to all assets.What could we do that would
be better?

4 A simpler alternative to rough volatility.

When we look again at the top left panel in Figure 3, we see a plot which
fluctuates strongly on small time scales, but on longer time scales the level
seems to be changing. If the level did not change, we could try to model the
data as an Ornstein-Uhlenbeck (OU) process with strong mean reversion
and high volatility; as the level appears to be changing, we could try an
energetic OU process mean-reverting to a slower one:

dYt = σY dW
′
t − β Yt dt, (5)

dXt = σX dWt + λ (Yt −Xt) dt. (6)

We refer to this model as OU-OU. Figure 4 is the analogue of Figure 3
for data generated by the model (5), (6) with parameter values σ2

X = 20,
σ2
Y = 0.625, λ = 210 and β = 2.5. The qualitative behaviour is very similar.

Moreover, the model is a bivariate diffusion, with linear dynamics and a joint
Gaussian distribution, so it really is very nice to work with. It is an example
of a multi-scale model of the kind analysed by Papanicolaou, Fouque, Sircar
and others; see [1] for a consolidated account of this theme.

So we have two models, the rough volatility model and the OU-OU which
both seem to explain the observed data well; is there any way to choose
between them? Figure 5 shows the bottom right-hand panel of Figure 4
with a longer range of values for ∆. The linear fits are shown as dashed
lines, and the true values (which we know because we know the model which

2... just as the q-q plot requires the data to be IID ...
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Figure 4: Plots for the FIX2000
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Figure 5: Plot for the FIX2000
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generated the data) are shown as solid curves. There is close agreement in
the original range of ∆ values, but as we move to much shorter timescales
large differences emerge. So this tells us that if we are to distinguish between
the rough volatility story and the OU-OU story, we need to look at these
shorter time scales.

5 High-frequency data.

The estimates presented on the Oxford Man website are derived from high
frequency data, but that data is not made available. So here we have to be
content with something smaller scale, but which is nevertheless indicative.
This is based on seven days of WTI futures tick data. Firstly we extract the
times at which the mid-price has moved by one tick, which excludes events
where the mid-price moves by half a tick, usually caused by the volume at
the best bid or best ask momentarily falling to zero. Then we exclude market
closed times. Finally we count for each minute the number of one-tick moves
which happened in that minute. This gives us for each minute an estimate
of the speed of the market; in a diffusion model, the variance σ2 measures
the speed, and in a discrete point process model (which is what we have in
high-frequency data) it is the rate of the point process which measures the
speed. The number of events in a given interval estimates the rate, so is
a suitable proxy for variance in this context. Figure 6 shows what we get;
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Figure 6: Plot for WTI high frequency data
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once again, the apparent linearity in the bottom right panel is striking.
Zooming in on the data panel, we see Figure 7. The most striking feature

is the extreme variability, with the numbers of events in consecutive minutes
often differing by an order of magnitude. In view of this, one may wonder
whether a model with continuous paths holds at such time scales; a scatter
plot reveals Figure 8, and presented in this form it is hard to feel confident
that there really is a continuous trajectory here. Maybe what we are seeing
is some more regular process plus additive IID noise? To try to understand
this possibility, we formed estimates of α for the raw data shown in Figure 7,
and then for the MA(2) and MA(3) of these. Intriguingly, for the raw data
we get estimates in the range found by Gatheral et al., but for an MA(3)
we find the estimates much closer to the limiting value 0.5 we would obtain
from a diffusion model!

q raw MA(2) MA(3)

0.5 0.137 0.327 0.482

1.0 0.132 0.319 0.468

1.5 0.130 0.316 0.460

2.0 0.129 0.314 0.455

2.5 0.128 0.313 0.450

3.0 0.128 0.313 0.446
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Figure 7: Close-up of WTI high frequency data
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Figure 8: Close-up of WTI high frequency data
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Conclusions.

What we have seen in this paper is that the notion that volatility is rough,
that is, governed by a fractional Brownian motion, is not an incontrovertible
established fact; simpler models explain the observations just as well. Nei-
ther makes much sense at very high frequency, but at this sort of timescale
any estimates will be noisy. However, if we are concerned to model volatil-
ity because we want to calculate option prices, then the timescales we care
about are days, weeks or months, not minutes, so a model that explains the
data well on those timescales is valuable. The OU-OU model proposed here
works on those timescales, and moreover is much easier to work with, being
a bivariate Gaussian diffusion, amenable to the multiscale option pricing
techniques explained in Fouque et al. [1].
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