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Summary. In the Black-Scholes paradigm, the variance of the change in log price during
a time interval is proportional to the length t of the time interval, but this appears not to
hold in practice, as is evidenced by implied volatility smile effects. In this paper, we find
how the variance depends on t in a tick data model first proposed in [1].

1. Introduction. The simple model of an asset price process which is the key to the
success of the Black-Scholes approach assumes that the price St at time t can be expressed
as exp(Xt), where X is a Brownian motion with constant drift and constant volatility. A
consequence of this is that if we consider the sequence Xnδ − X(n−1)δ, n = 1, . . . , N of
log-price changes over intervals of fixed length δ > 0, then we see a sequence of independent
Gaussian random variables with common mean and common variance, and we can estimate
the common variance σ2δ by the sample variance in the usual way. Dividing by δ therefore
gives us an estimate of σ2, which (taking account of sample fluctuations) should not depend
on the choice of δ - but in practice it does. As the value of δ increases, we see that the
estimates tend to settle down, but for small δ (of the order of a day or less) the estimates
seem to be badly out of line. Given these empirical observations, we may not feel too
confident about estimating σ2, nor about forecasting volatility of log-price changes over
coming time periods. Of course, if we are interested in a particular time interval (say, the
time to expiry of an option), we can estimate using this time interval as the value of δ,
but this is only a response to the problem, not a solution to it.

The viewpoint taken here is that this problem is due to a failure of the underlying
asset model, and various adjustments of the model will never address the basic issue. The
basic issue is that the price data simply do not look like a diffusion, at least on a small time
scale; trades happen one at a time, and even ‘the price’ at some time between trades is
a concept that needs careful definition. Aggregating over a longer timescale, the diffusion
approximation looks much more appropriate, but on shorter timescales we have to deal
with quite different models, which acknowledge the discrete nature of the price data.

In this paper, we will consider a class of tick-data models introduced in Rogers & Zane
[1], and will derive an expression for

(1) v(t) ≡ var(log(St/S0))

in this context. Under certain natural assumptions, we find that there exist positive
constants σ and b such that for times which are reasonably large compared to the inter-
event times of the tick data

(2) v(t) ∼ σ2t+ b.
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Section 2 reviews the modelling framework of [1] in the special case of a single asset, and
Section 3 derives the functional form of v. Section 4 concludes.

2. The modelling framework. The approach of [1] is to model the tick data itself. An
event in the tick record of the trading of some asset consists of three numbers: the time at
which the event happened, the price at which the asset traded, and an amount of the asset
which changed hands. The assumptions of [1] are that the amounts traded at different
events are IID (independent, identically-distributed), and that there is some underlying
‘notional’ price process z with stationary increments such that the log price yi at which
the asset traded at event time τi is expressed as

(3) yi = z(τi) + εi,

Here, the noise terms εi are independent conditional on {τi, ai; i ∈ Z}, where ai denotes
the amount traded at the ith event, and the distribution of εi depends only on ai. The
rationale for this assumption is that an agent may be prepared to trade at an anomalous
price as a way of gaining information about market sentiment, or as a way of generating
interest; but he is unlikely to be willing to trade a large amount at an anomalous price.
In short, large trades are likely to be more keenly priced than small ones. This modelling
structure permits such an effect. Of course, we could for simplicity assume that the εi
were independent with a common distribution.

It remains to understand how the process of times τi of events is generated. The model
is based on a Markov process X which is stationary and ergodic with invariant distribution
π. Independent of X we take a standard Poisson counting process Ñ , and consider the
counting process

Nt ≡ Ñ(

∫ t

0

f(Xs)ds),

where f is a positive function on the statespace of X . As is explained in [1], it is possible
to build in a deterministic dependence on time to model the observed pattern of intra-day
activity, but for simplicity we shall assume that all such effects have been corrected for.
Even when this is done, though, there are still irregularities in the trading of different
shares, with periods of heightened activity interspersed with quieter periods, and these do
not happen in any predictable pattern. So some sort of stochastic intensity for the event
process seems unavoidable; moreover, when we realise that a deterministic intensity would
imply that changes in log-prices of different assets would be uncorrelated, a stochastic
intensity model is more or less forced on us.

The paper [1] presents a few very simple examples, and discusses estimation procedures
for them, so we will say no more about that here. Instead we turn to the functional form
of v implied by this modelling framework.

3. The functional form of v. The first step in finding the form of v is to determine the
meaning of St in the expression (1). Since the price jumps discretely, we propose to take
as the price at time t the price at the last time prior to t that the asset was traded; if

Tt ≡ sup{τn : τn ≤ t} ≡ τν(t),
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then we define logSt ≡ yν(t). It is of course perfectly possible that for t > 0 we may have
Tt = T0; this is equivalent to the statement that there is no event in the interval (0, t]. We
have to bear this possibility in mind. It follows from (3) that

(4) log(
St

S0
) = z(Tt)− z(T0) + εν(t) − εν(0),

so that

E
[

log(
St

S0
)
]

= E[ z(Tt)− z(T0) ](5)

= µE[Tt − T0 ].(6)

Here, we have used the assumption that z has stationary increments, which implies in
particular that for some µ

E[ z(t)− z(s) ] = µ(t− s)

for all s, t. Rather remarkably, the expression (6) simplifies. Indeed, because the underlying
Markov process X is assumed to be stationary, Tt is the same in distribution as T0 + t, so
we have more simply that

(7) E
[

log(
St

S0
)
]

= µt.

We may similarly analyse the second moment of the change in log price over the interval
(0, t]:

E
[

{

log(
St

S0
)
}2
]

= E[ (z(Tt)− z(T0))
2 ] +E[ (εν(t) − εν(0))

2 ]

= E[ var(z(Tt)− z(T0)) ] + µ2E[ (Tt − T0)
2 ] + 2var(ε)P [Tt > T0 ],(8)

which we understand by noting that if Tt = T0 then εν(t) − εν(0) = 0, whereas if Tt > T0

then the difference of the ε terms in (4) is the difference of two (conditionally) independent
variables both with the same marginal distribution. In general, no simplification of (8)
is possible without further explicit information concerning the underlying probabilistic
structure. In particular, the term E[ (Tt − T0)

2 ] does not reduce simply, and the term

(9) P [Tt > T0 ] = 1−E exp(−

∫ t

0

f(Xs) ds)

cannot be simplified further without knowledge of the process X (and perhaps not even
then!) Nevertheless, if we were to assume that the increments of the notional price process

z are uncorrelated (which would be the case if we took z to be a Brownian motion with
constant volatility and drift), then we can simplify

E[ var(z(Tt)− z(T0)) ] = σ2E[Tt − T0 ]

= σ2t.(10)
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Under these assumptions, we may combine and find

(11) var

(

log
(St

S0

)

)

= σ2t+ µ2var(Tt − T0) + 2var(ε)P [Tt > T0 ].

While the exact form of the different terms in (11) may not be explicitly calculable
except in a few special cases, the asymptotics of (11) are not hard to understand. The
term var(Tt − T0) is bounded above by 4ET 2

0 , and tends to zero as t ↓ 0. Assuming that
the Markov process X satisfies some mixing condition, we will have for large enough t that

var(Tt − T0) + 2varT0.

The term P [Tt > T0 ] is increasing in t, bounded by 1, and behaves as Ef(X0) as t ↓ 0.
For times which are large compared to the mean time between trades, this probability will
be essentially 1. So except for thinly-traded shares viewed over quite short time intervals,
we may safely take the probability to be 1, which justifies the form (2) asserted earlier for
the variance of the log price.

4. Discussion and conclusions. We have shown how a natural model for tick data
leads us to the functional form

σ(t) ∼
√

σ2 + b/t

for the ‘volatility’ σ(t) over a time period of length t. This appears to be consistent with
observed non-Black-Scholes behaviour of share prices in various ways. Firstly, implied
volatility typically decreases with time to expiry, and the ‘volatility’ in this model displays
this feature. Secondly, log returns look more nearly Gaussian over longer time periods, and
we may see this reflected here in that if we assume the notional price is a Brownian motion
with constant volatility and drift, then the log return is a sum of a Gaussian part (the
increment of z) and two noise terms with common variance. For small times, the noise
terms dominate, but as the time interval increases, the variance of z(t) increases while
the variance of the two noise terms remains constant; it follows that the distribution will
look more nearly Gaussian for longer time periods, but could be very different for short
time periods. Thirdly, there is the empirical result of Roll [2] who studies the direction
of successive price jumps in tick data, and finds that the next price change is much more
likely to be in the opposite direction from the one just seen; this is easily explained by
a model in which there is some notional underlying price, and observed prices are noisy
observations of it.

Given tick data on some asset, the ideal would be to fit the entire Markovian intensity
structure of Section 2, though this may not always be easy. However, in terms of forecasting
volatility, if we accept the modelling assumptions which led to (2), this level of fitting is
not needed. We could form estimates σ̂(δi) of the variance of log(S(δi)/S(0)) for a range
of time intervals δi (for example, hourly, daily, weekly and monthly) and then fit the
functional form (2) to the estimates, a linear regression problem. Of course, we would
want to be confident that all of the time intervals δi chosen were long enough for negligible
probability of no event in such an interval; but if that is not satisfied, how are we going to
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be able to form the estimator σ̂(δi)?! In this way, we are able to extract more information
from the record of tick-by-tick data than would have been possible had we imposed the
log-Brownian model on that data. It seems likely that tick data should tell us much more
than just a record of end-of-day prices, but until we have suitable models of tick data, we
cannot hope to extract this additional information.
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