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Evaluating first-passage probabilities for
spectrally one-sided Lévy processes

L.C.G. Rogers University of Bath

1 Introduction.

The celebrated Wiener-Hopf factorisation of a Lévy process X gives an expression
linking the laws of the maximum and the minimum of X up to an independent
exponential time. In general, it is hard to make use of this factorisation, since
in order to find one of the laws, one needs in effect to know the other; however,
in the case of a spectrally negative Lévy process (that is, a Lévy process which
only jumps down ?), it is possible to make progress. The reason for this is that
the law of the maximum at the independent exponential time is easily shown 3
to be again exponential. Thus, apart from the parameter of the distribution, the
law of the maximum is known, and the law of the minimum can be deduced.
Strictly speaking, we can only deduce the Laplace transform of the law, and we
now have to invert what is a double transform, in time and in the spatial variable.
It is here that the methods due to Dubner & Abate (1968), and Hosono (1981),
developed by Abate & Whitt (1992a), (1995), and extended to the multidimen-
sional setting by Choudhury, Lucantoni & Whitt (1994) may be applied. The
idea of the method is basically a Fourier inversion integral, performed by inte-
grating up a suitably-chosen contour a + iR, where the integral is approximated
by a trapezium-rule sum, with equally-spaced points. The spacing of the points
is chosen so that at the place where we want to evaluate the original function,
the complex exponential in the Fourier integral alternates in sign, so that the
inversion recipe is the sum of an alternating series; Euler summation is used as
an acceleration technique. Choice of the parameter a allows good control over
the aliasing error, and the method proves to be fast, accurate and stable.

While this method has all the nice numerical properties one could wish for, in
many applications it may be hard to apply because one does not have the Laplace
transform of the desired law in closed form; the moment-generating function of the
limit law for a super-critical branching process is one good example of this (see, for
example, Grimmett & Stirzaker (1992), Chapter 5). A closely-related example in

2We talk of spectrally negative Lévy processes to fix our ideas, but of course all that we say
applies equally well to spectrally positive Lévy processes.

3by a simple strong Markov and lack-of-memory argument - see, for example, Bertoin (1996),
p- 190.



queueing theory is the moment generating function of the busy period distribution
of an M /G /1 queue (see, for example, Grimmett & Stirzaker (1992), Chapter 11).
Another example (which is the topic of this paper) is the computation of the first-
passage-distribution of a spectrally negative Lévy process; to apply the method,
we have to evaluate the Laplace transform at a general complex argument, but
the Laplace transform is expressed in terms of the inverse of an analytic function,
namely, the Lévy exponent. Only rarely can one find an explicit expression for
this inverse function. The solution here is to use Cauchy’s Theorem; we integrate
up another contour, not the straight line a + ¢{R. Provided we can show that the
contribution from the ‘ends’ of the contour goes to zero, the answer is the same.
By making the contour the image of some other nice contour under the Lévy
exponent, we do not need to find the inverse. Alternatively, it would be possible
to proceed by numerically computing the inverse; Abate & Whitt (1992b) show
some situations where this can be done. The need to perform the numerical
computations detailed in this article arose in a specific context in credit risk
modelling; see Hilberink & Rogers (2000).

The method is very easy to implement; in Section 5 the Matlab code for the
calculation of the values is given. Since the calculation can be expressed in matrix
terms, the efficient matrix-handling routines in Matlab make the computation
extremely rapid.

2 The problem.

We are going to study a spectrally-negative Lévy process X, characterised by

Eexp(2X;) = exp(ty(2)), (2.1)

where the Lévy exponent v has the (Lévy-Khintchin) representation
1 0
Y(z) = éazz2 + bz —i—/ {e¥® =1+ 2(|z| A1)} v(dz), (2.2)

where the measure v satisfies the integrability condition

0
/ (22 A1) v(dz) < oo
see, for example, Bertoin (1996), Chapter VII, or Bingham (1975). We shall use

the notation .
vo(z) = 50222 + bz,



and shall throughout assume that o is positive; as so often with general Lévy
processes, the case where ¢ = 0 and the process is infinite-variation is the most
difficult. We will need at a later stage of the argument that

P(2) — o(2)
Yo(2)

and this works when ¢ > 0, but is not true if o = 0, as the case of an asymmetric
Cauchy process demonstrates. Introducing the notation

— 0, (2.3)

X, = sup Xy, X, = inf X,
and letting T, denote a random variable with exponential(A) distribution, in-
dependent of X, we have the celebrated Wiener-Hopf factorisation of the Lévy
process X:

Eexp(2X(T))) = )\%7#(2)
Ui (2)-95 (2)

Eexp(2X (T3) ).E exp( 2X(T)) ).
(2.4)

See, for example, Bertoin (1996), p. 165, Bingham (1975), Theorem 1, or Rogers
& Williams (2000), 1.29. In the case of a spectrally negative Lévy process, the
law of X (Ty) is ezponential; see, for example, Bertoin (1996) for an explanation.
Thus we know that for some * = 3*(\) we shall have

U (2) = B[] = B*ﬁi - (2.5)
Thus ) B
_ —Z

Since this function is analytic in the right half-plane, it must be that the appar-
ent pole which occurs when A\ = ¢(z) is in fact cancelled out by a zero in the
numerator, which is to say that the unknown value of 8* = §*(\) must be the
solution to

P(B) = A (2.7)

The conclusion then is that we may find the Wiener-Hopf factor 95 (z) explicitly
in this situation, at least up to solution of the equation (2.7). This gives us

9] 0
Yy (z) = / )\e_’\tdt/ z2e**P(X, > x)dx
0

— 00

A b —z
A=1(z)" B




Writing H, = inf{t : X; < z}, and setting
f(t,z) = P(H_, > t) = P(X, > —x),

our problem is to invert the transform

/ / e M f(t, x) dtda
o Jo

T s
= B e@)F e (28)

f(x2)

The Laplace transform f is analytic in the region where both arguments have
strictly positive real parts, and the standard Fourier transform inversion method
would give us the unknown function f by Fourier integration:

f(t,2) /F 2M/F () (2.9)

it is this that we shall approximate.

3 The solution.

The difficulty in implementing the Fourier inversion recipe (2.9) is in evaluating
the function B* at a general complex argument. We sidestep this difficulty by
integrating up the contour I'y instead of I'y, where

To= (1o thy ) (T1).

The rationale for this choice is that for large z, 1)(z) and v4(z) are similar in the
sense of (2.3), so the contour I'y will be close to I'y. Are they close enough that
the integral up 'y agrees with the integral up I'y in (2.9)7 Inspection of (2.8)
reveals that for each fixed z,
M z) =1

as |A\| = oo. Thus if we integrate up I'; from a — iN to a + iN then cross over
to ['y and integrate down from (v o1, ')(a+iN) to (¢ o hy*)(a —iN) and then
cross back to a — iN, we can bound the contribution from the little crossings.

Indeed,

Yo(zn) — ¥(2n)
to(zn)
where 2, = 10, ' (a + iN), which tends to zero as N — oo by (2.3).

a+iN—(oyi)(a+iN)|
a+1iN B




The function ;" is available in closed form:

Vb2 +20%2 -0

o2

Uy '(z) =

where we take the function y/- to be real-positive on R | with a cut along (—o0, 0].
If we now abbreviate g = ¢ 0 ¢, ', the inversion formula (2.9) becomes

s = [ o / (©) expitg () + 22} (9(0), )

- /1, omi(o wo (C) )/1“ 2—7”1/1(1/’0 (€)) exp{tg(¢) + x2} f(9(C), 2)

There is now no problem in evaluating the integrand in the inversion formula,

because
; Ui '(¢) -2

f(g(C), Z) = =
(9(¢) —v(=)vg ' (O)z
Fixing ¢ > 0 and z > 0, we approximate the double integral for f(¢,z) by the

double sum
hiho
472

b

N N

Z Z g'(ar + inhl)f(g(% + inhy),as + imhs)

n=—Nm=—N

SNE

x exp{tg(a, +inh,) + z(ay + imhy)},

and then (following Choudhury, Lucantoni & Whitt (1994)) we take a; = A;/(2tly),
ay = Ay /(2zly), and hy = w/(tly), he = w/(zly), where [; and [y are positive inte-
gers, and A; and A, are positive reals chosen large enough to control the aliasing
error, as explained in Choudhury, Lucantoni & Whitt (1994). For the calcula-
tions used as test cases in this article, it seemed that taking A; = Ay = 22.0, and
l; = ls = 1 gave satisfactory results. The raw value Sy may not be a very good
approximation, but by using Euler summation (as advocated by Simon, Stroot
& Weiss (1972)) to smooth the values of the (nearly) alternating sums, we were
able to obtain good accuracy. The approximation to f(¢,z) finally is

) = é 2 M <A]:[) SNik-

4 Some numerical values

We took three examples to test the method, and the answers are quoted to 4
decimal places. Higher accuracy could be obtained at the expense of time, but
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certainly ‘basis point accuracy’ (that is, one percent of one percent) is good
enough in the finance industry.

(i) We took the continuous example X; = oW, + bt, which is the only case where
the answer is known in closed form; indeed,

a—ct a—+ct

Vi Vit

for x < 0, where ® is the N(0,1) distribution function, and a = z/o, ¢ = b/o.
This can be confirmed by differentiating with respect to ¢, to recover the well-
known first passage density for a drifting Brownian motion - see, for example,
Borodin & Salminen (1996), formula 2.2.0.2; The parameter values here were
o = 0.2, b = —0.015, and the results are displayed in Table I. The columns are
indexed by the z values, and the rows indexed by the ¢ values. We used N = 6
and M = 9 in the Euler summation, with aliasing parameters A; = A; = 22. The
exact values computed from (4.1) agreed everywhere except occasionally in the
final figure. In the middle of the afternoon on a not particularly fast multi-user
server, the entire table of 120 entries computed in 62 seconds.

P(H, <t)=®( ) + e*d( ) (4.1)

Table I: P(H_, > t) in the Brownian case

0.01 0.02 0.03 0.04 0.05 0.06 0.7 0.08 0.09

0.10

0.2 | 0.0856
0.4 | 0.0595
0.6 | 0.0480
0.8 | 0.0411
1.0 | 0.0364
1.2 0.0329
1.4 | 0.0302
1.6 | 0.0280
1.8 | 0.0262
2.0 | 0.0247
2.2 1 0.0234
2.4 0.0222

0.1708
0.1191
0.0961
0.0823
0.0729
0.0660
0.0606
0.0562
0.0526
0.0495
0.0469
0.0446

0.2544
0.1784
0.1441
0.1236
0.1095
0.0991
0.0910
0.0845
0.0791
0.0745
0.0706
0.0671

0.3354
0.2370
0.1919
0.1648
0.1461
0.1323
0.1216
0.1129
0.1057
0.0996
0.0943
0.0897

0.4130
0.2944
0.2392
0.2057
0.1826
0.1654
0.1521
0.1412
0.1323
0.1247
0.1181
0.1124

0.4863
0.3505
0.2858
0.2463
0.2189
0.1984
0.1825
0.1696
0.1589
0.1498
0.1419
0.1351

0.5547
0.4048
0.3316
0.2863
0.2548
0.2313
0.2128
0.1979
0.1854
0.1749
0.1657
0.1578

0.6177
0.4570
0.3763
0.3257
0.2903
0.2638
0.2429
0.2260
0.2119
0.1999
0.1895
0.1805

0.6750
0.5071
0.4198
0.3644
0.3254
0.2960
0.2728
0.2540
0.2382
0.2248
0.2133
0.2031

0.7265
0.5546
0.4619
0.4022
0.3599
0.3278
0.3024
0.2817
0.2644
0.2496
0.2369
0.2257

(ii) The second example used jumps which had an exponential distribution with
parameter ¢ = 4, arriving at rate a = 2. The other parameters of the problem
were 0 = 0.2 and b = —0.015 as in the first example.




Table II: P(H_,, > t) in the exponential jumps case

0.01

0.02

0.03

0.04

0.05

0.06

0.7

0.08

0.09

0.10

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.0618
0.0325
0.0202
0.0136
0.0096
0.0069
0.0051
0.0039
0.0029
0.0023
0.0018
0.0014

0.1235
0.0651
0.0406
0.0273
0.0192
0.0139
0.0103
0.0077
0.0059
0.0045
0.0035
0.0028

0.1843
0.0978
0.0611
0.0412
0.0290
0.0210
0.0155
0.0117
0.0089
0.0069
0.0053
0.0042

0.2436
0.1303
0.0817
0.0551
0.0388
0.0281
0.0208
0.0157
0.0120
0.0092
0.0072
0.0056

0.3009
0.1626
0.1023
0.0691
0.0488
0.0354
0.0262
0.0197
0.0151
0.0116
0.0090
0.0071

0.3556
0.1945
0.1229
0.0833
0.0588
0.0427
0.0317
0.0239
0.0182
0.0141
0.0109
0.0086

0.4072
0.2258
0.1435
0.0975
0.0690
0.0502
0.0373
0.0281
0.0215
0.0166
0.0129
0.0101

0.4556
0.2566
0.1641
0.1118
0.0793
0.0578
0.0429
0.0324
0.0248
0.0191
0.0149
0.0117

0.5003
0.2866
0.1844
0.1262
0.0897
0.0654
0.0487
0.0368
0.0281
0.0217
0.0169
0.0133

0.5414
0.3157
0.2047
0.1406
0.1002
0.0732
0.0546
0.0413
0.0316
0.0244
0.0190
0.0149

In contrast to the first example, there is no independent check of the numerical
values, but it is easy enough to run the calculations again with higher values of
N and M as a check. Repeating the calculations with N = 12 and M = 15
produced differences of at most 4 x 107° in the table; this changes the final digit
in a few places.

(iii) In the third example, the jumps were uniformly distributed on the interval
[—0.05, 0], coming at rate 2. Once again, 0 = 0.2 and b = —0.015. We computed
the values in Table IIT using N = 6 and M = 9, then recomputed them using
N = 12 and M = 15. The differences in the answers were never bigger than
3.051 x 10°, so as with the second example, there were just a few changes in the
final figure of some entries.

5 Matlab code

We print here the Matlab code used to generate the results of the previous section.
Matlab was chosen because it has the speed of compiled C, but the ease of use of
a package. It handles complex numbers with no difficulty, and the matrix/vector
calculations are done extremely efficiently. Also, the code is very compact, as the
specimen program below demonstrates.

global sigma a b ¢




Table III: P(H_, > t) in the uniform jumps case

0.01

0.02

0.03

0.04

0.05

0.06

0.7

0.08

0.09

0.10

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.0759
0.0496
0.0380
0.0312
0.0266
0.0233
0.0207
0.0186
0.0169
0.0155
0.0143
0.0132

0.1519
0.0996
0.0765
0.0628
0.0536
0.0468
0.0416
0.0374
0.0340
0.0312
0.0287
0.0266

0.2274
0.1500
0.1154
0.0949
0.0810
0.0708
0.0629
0.0566
0.0515
0.0472
0.0435
0.0403

0.3018
0.2006
0.1548
0.1275
0.1089
0.0952
0.0847
0.0762
0.0693
0.0635
0.0586
0.0543

0.3744
0.2513
0.1946
0.1605
0.1372
0.1201
0.1068
0.0963
0.0876
0.0803
0.0740
0.0686

0.4443
0.3017
0.2346
0.1939
0.1660
0.1454
0.1294
0.1167
0.1062
0.0973
0.0898
0.0833

0.5107
0.3515
0.2746
0.2275
0.1950
0.1710
0.1524
0.1375
0.1251
0.1148
0.1059
0.0983

0.5731
0.4003
0.3144
0.2613
0.2244
0.1970
0.1757
0.1586
0.1444
0.1325
0.1223
0.1135

0.6310
0.4479
0.3539
0.2950
0.2539
0.2232
0.1993
0.1800
0.1640
0.1506
0.1391
0.1291

0.6840
0.4940
0.3930
0.3287
0.2835
0.2496
0.2230
0.2016
0.1839
0.1689
0.1560
0.1449

sigma=0.2;¢c=0.05;a=2.0;b=-0.015;

% Now some parameters of the discretization - dx is the

% spacing of the x values, dt is the spacing of the t values,
% and nx, nt are the numbers of such values to be found .
% The parameters 11 and 12 are as in the Ann Appl Prob 4 article

% of Choudhury, Lucantoni & Whitt

dt=0.2;dx=0.01;nx=10;nt=12;11=1;12=1;
N=6;M=9;A1=22.0;A2=22.0;
X=dx:dx:nx*dx;T=dt:dt:nt*dt;

% Next we create the weights to be used in the
% Euler summation of the partial sums:

mx=pascal (M+1) ;my=fliplr (mx) ;bn=diag(my)*2~ (-M) ;

weight=ones ([2#N+1 1]);head=cumsum(bn) ;tail=1-cumsum(bn) ;
tail (M+1, :)=[];head (M+1,:)=[];

weight=[head;weight;tail];

% Now we set the values of the arguments at which the
% transform is to be evaluated:

vall=-(N+M) : (N+M) ;vall=(i*pixvall+A1/2)/11;




val2=-(N+M) : (N+M) ;val2=(i*pixval2+A2/2)/12;
ri=ones(1,1+2%(N+M)) ;cl=ones (1+2*(N+M),1);
T_arr=kron(vall’,rl) ;X_arr=kron(cl,val2);
T_inv=(1./T)’;X_inv=1./X;

TT=kron(T_inv,ones(1,nx)) ;XX=kron(ones(nt,1) ,X_inv);
T_args=kron(TT,T_arr) ;X_args=kron(XX,X_arr) ;

% Next we evaluate the integrand at all the points where
% it needs to be found:

integrand=FF(T_args,X_args) .*exp(
diag(kron(T,ones(1,1+2xN+2xM)) )*lev(phi_0(T_args))
+ X_args*diag(kron(X,ones(1,1+2*N+2xM)) ) )R

% .. and now we prepare the two matrices which will
% pre- and post-multiply integrand to give us the answer:

left=kron(diag(T_inv) ,weight’)/(2*11);
right=kron(diag(X_inv) ,weight)/(2%12);

% and finally the answer:

sol=real(left*integrand*right)

This code requires the function kept in the file FF.m:

function f=FF(z1,z2)

global sigma a b ¢

z=phi_0(z1);

f1=(z-2z2) .xdlev(z) ;
£2=(1lev(z)-lev(z2)) .*z.*z2 . *(b+sigma~2%z) ;
f=f1./£2;

which in turn requires the functions in phi_0.m:

function g=phi_0(z)
global sigma a b c
g= ( sqrt( b 2+2*sigma”2%z) - b)/sigma”2;

and the (problem-specific) functions in lev.m:
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function g=lev(z)
global sigma a b ¢
g=sigma~2%z."2/2 + b*z + a*x(l-z*xc-exp(-z*c))./(c*z);

and in dlev.m:

function g=dlev(z)
global sigma a b ¢
g=sigma~2*z+ b +axexp(-c*z) .*(l+c*xz-exp(c*z))./(c*z."2);

The functions lev.m and dlev.m given above are for the final example, and the
parameter settings used are for the final example.
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