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TIME-SUBSTITUTION BASED OF FLUCTUATING ADDITIVE FUNCTIONALS
{WIENER-HOPF FACTORIZATION FOR INFINITESIMAL GENERATORS)
by

L.C.G, Rogers and David Williams

1. This note is merely a first indication df how some of the idens in the
preceding paper (2] by Borlow, Rogers, and Williams (hereafter denoted by [BR¥ 1Y,
extend to Markov processes with 'continuous' state-space, ¥e hope to publish a
more detailed study soon, Unusual and interesting purely-analytic problems are
posed by the work. However, our main purpose is to attempt to understand what

is going on in the probabilistic espects of the subject,

Our problem has considerable Practical importance (but we can make no such
claims for the results presented heref) Pure-mathematical technicalities are
therefore avoided. We remark however that this work (though not today's
exumples} forces us to acknowledge the practicel usefulness of branch-points,
incursions, end other 'exotica' of the general theory, Vivent les hypothtses
droites. ‘

Here, we try to convey just a whiff of the flavour of things vie two concrete
examples, But, for the deepest concrete work done, and on a problem which is
importent, sce McKean [5 J.

Rote. ¥We are aware that many of the results in the present paper may be
obteined via the classical Wiener-Hopf methods described for example in

Bingham [ 3 }J.  Thet our methods are (in principle!) of much wider applicability

is of course evident from [BRW].

Acknowledgement, ¥e thank Professor J.F.C. Kingman for proving our conjecture

thet {4.5) <=> (4.7), snd for allowing us to publish his fine proof.




involves local times, and cases where ¢ 1is not of finite veriation, are also

of interest, For t > 0, set

= 4

T+ = inf[s: ¢ >t}
t 5

A standard argument hased on the strong Markov property of X shows that

~ 4 <+ .
x*, where Xt = X(Tt)’ is a (strong) Markov process, For c > 0, we wish

~d
to calculate the transition function IPC(t)I, where

~ 4 x + +
P{t)i(x) = E[exp(~et}rox(a7)],
~ —~
or, equivalently, the resolvent ER (R}I, or "natural' generator QT, of
C
I§+{t)]. ¥hen ¢ = 0, we suppress e from the notation; but note that
c

FlOx) = Bleox(s]); «f <al,

Amnongst interesting probabilistic problems posed by this work is the following:

e
what form of killing of X is induced by killing X at rate ¢ ?

+
3, Let ¢ be of the form (2.1), and suppose that E is closed, where
+ . { . » ~+ +
E Zz Ix & FE : V(x) > OI. By right-continuity of paths, X lives in E .,
Suppose first that ¢ > O, and regard ¢ as fixed, Keep [BRW] in mind,
Zoppyor cctsh thax
and hope for the best! So, write g &€ ”1 c ir gEED{Q) and

£

{d.l) Qg = pPvg + cg

for sowe complex number p = p(g} with R(p) < Q. Then, exp(~p¢t— ct)gfxt)

is u martingale {right—continuous under the right hypotheses) which is bounded
on fo,~ ] for every u 2 Q. Apply the optional-sampling theorem at time
1 to chbtain

(3.2) '?Z(t}g+ = E.[exp{—01:)g+0 §4(t)] = e“tg+ on E', where gt

+
denotes the restriction of g to E Note thaot the fact that ¢ > 0 takes

+ .
care of difficulties associasted with the possibility that Tt = o,




' .
Let CILO to obtain for x > 0, and with v = (272)% 5 o,
v

t

|
-
<

(4.3) Ex[cosyfiz + X sin‘{i:; T < w] = expf—&yzt)[cosy'x + K

t sin'{x}.
Now let +!|0 to obtain
Vv
+
P, <w] = 1, v,

Assume for the moment that

(4.4) the functions [gi 1Y > Of on [O,m}, where

+ +
g {x) = cosyx + K" siny x x € [0,m),
are full on [0,w).

~
Then the transition function [P {+)} is uniquely determined by the fact that

its resolvent IR (-)I satisfies:

-

zmﬁ*(x)g; - g: (h = 9.

~ 4+ ~~
Let us make an intelligent guess about !R (:)}. Let Y+ be the Markov

process on [O,m) which behaves like Brownian motion away from O, never

'exits © continuocusly', and Jumps from O according to the Léyxﬁmeasure-

~{(14a) -4
(4.5) J(dx} = constant. x dx, O <a <1, tan $na = K

Let ioﬁ+{-)] be the resolvent of Brownian motion on (O,m) killed at O,

Then the resolvent {E+(‘)I of Y 1is given by

),

T ont(x) = RTIRT(x) + e‘*”‘J(Onm)h*)/m(on*(x)z(o’m)

where n denotes an arbitrery bounded function on [O,aﬂ, and, es always,
~ 1
r = {2x)7, It is easily checked that

{4.86) OR+(1}gi(x) = (zl)ul{cosy'x + K¥ginyx - e—Yx],
|
Ty [V -1 IR £
OR ()",I(O’f):—.).\“'} }\. [1 (& ],

The essential fact is that for J as at (4.5},

1
(cosyx + XK sinvx - 1) J(dx) = 0, Yy > C,

J(()ﬁ()




Then f is analytic in ES(T) > O}, and continuous on {5(73 2 O]e
Moreover, E(f(y)) 2 0 (with equality at <+ = 0O and Perhaps at multiples
of & burely real 8). Now, f 1is real and positive on the upper imaginary
axis {£(y) =0, s(y) > o}; and, since (4.7) holds, (1 - K*i)f is
imaginery on the right half fi T} > 0, ﬁ(y) = OI of the real axis. Hence,
in the first quadrant the harmonic function ¢, where

ofy) = erge(y) =  (log(y)),
stays bounded between =3 and 4%, and has boundary values as shown in

Figure 1.

Figure 1

Hence, ¢(Y) = targ {-iy). Thus logffy) is determined up to an additive

constant, and

f(Y) = Constant,(—iY)a.

In particular, for real 6 > 0o,

and so0 J is determined.




7. Now, of course, there is much more to study in connection with the above
example, In particular, the question mentioned earlier ahout how killing X

vl . .
at rate ¢ induces a killing of X +» 1s rather interesting. It 13 clear that

—~_

+
X I1s killed aqcording to a discontinuous multiplicative functional which takes

~t
into account the jumps of X from O. But we are not going to become
invelved with the analytic complexities of that problem now,

Instend, we end with an example of a very different typs.

g. Exemple. Let [Bt; t > O] be n Brownian motion con I, sterting at

O, with drift p > 0, so0 that the law of {Bt - Ht; t > O} is Wiener measure,

Define

- - = 2 -B = V o4+ M
Ve = My -BL ¢ = t t t t

= V(‘I:) . [AM(‘=%G‘.€¢' Bi‘b]

«
1l

inf{s; o, > ti, V:

Now V is a time-homogeneous strong Markov process, and M 1is local time
at O for V. Thus ¢ is a fluctuating continuous additive functional for V.
.'k
Obwwiously, P[Tt <{D] = 1,
The results of Rogers and Pitman [7 ] make it plain that the transition

~

~+
semigroup ZPti of V¥ is given by the following formulae:

{6.1.1) 7:'(o,dy) = one Yo S NV [0,t]

and, for x> O,

8.1.11) N P I T S TE R C e

(5.1.111) 3:'(x,dy) = zue MY(y - ¢ My L eugﬂ{x+t))”2 dy on [0,x+t)
f8.1.1v) 5:‘(x,(x+t,m)) = 0

Here is a martingale proof in the spirit of the remainder of this paper,

Begin by observing that for 6 »

£

8]
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