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1. Introduction. There are presently many different models of the
term structure of interest rates, but little agreement on any one natural
one. This is perhaps not surprising in view of the nature and quality of
data on term structure; prices of coupon-bearing and zero-coupon bonds,
LIBOR rates, index-linked bonds, together with options and futures on
such things, all provide information about interest rates, and have to be
compatible with any successful model, either by being used to estimate
parameters of the model, or by being consistent with the predictions of the
(fitted) model. In addition, interest rate swaps provide information, but
this is a different market, and should not be expected necessarily to fit the
same model.

Much of the work done in this area describes models which one could
use, rather than claiming strongly that one should use them; I have very
little to say about what model(s) one should use, but will say a few things
about what one should not use! To decide this, it helps to be clear about
what the goal is; we want to build a model that practitioners may rely on.
Now a practitioner wants a model which is:

(a) flexible enough to cover most situations arising in practice;

(b) simple enough that one can compute answers in reasonable time;
(c) well-specified, in that required inputs can be observed or estimated;

(d) realistic, in that the model will not do silly things.

Additionally, the practitioner shares the view of an econometrician who
wants

(€) a good fit of the model to data;
and a theoretical economist would also require

(f) an equilibrium derivation of the model.

For the practitioner, (a)-(e) already constitute Nirvanal

The fundamental object of study for term-structure is the spot-rate
process (r4):>g. This is a continuous-time process, often assumed to have
continuous paths, though sometimes also modelled (more realistically) with
jumps. The spot rate represents the instanteneous rate of riskless return
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at any time, so $1 invested at time ¢ will have grown by later time T to

T

$exp / rydu

t

Now if one assumes that r is a stochastic process, the problem of pricing
a bond is non-trivial: how much should one pay at time ¢ to receive $1 at
later time T'7 Arbitrage pricing theory says the price must be

T
P(t,T) = E |exp —/rudu | F

t

where the expectation is with respect to the “risk-neutral” measure. So
the central question is how to model the law of r under the risk-neutral
measure so as to achieve (a)-(e).

The plan of the rest of the paper is as follows. Section 2 discusses
some very simple Gaussian models for 7, and provides a bound for the er-
ror arising from the possibility that r can be negative. Section 3 presents
some simple one-factor squared-Gaussian models, with an appendix sum-
marizing the analysis of this class of models. Section 4 discusses some
two-factor models which have been proposed. In particular, we take a very
general class of multi-factor squared Gaussian models and analyse the term-
structures which can arise, and in Section 5 we discuss some “whole-yield”
models currently in vogue. Section 6 is a discussion of the relationship
between equilibrium and no-arbitrage pricing; essentially, the two are the
same. Finally, in Section 7, we briefly survey the questions of estimating
and fitting with observed data. The relevant literature is surveyed in the
corresponding Sections.

As a piece of notation, we define the yield curve at time ¢ to be the
function

T — log P(t,T) (T >1)

T—1

and the forward rate f;, (for 0 <t < u) to be given by

T
P(t,T) =exp —/ffudu ,
t

provided the yield curve at time ¢ is differentiable.

2. Simple Gaussian models. If o, 3,0 : RT — R* are any locally
bounded functions, then the stochastic differential equation

(21) d’l“t = O'tth + (O[t - ﬂtm)dt
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for r has a unique solution, which is a Gaussian process. This is the model
considered by Hull & White [27], generalising the models of Vasicek [42],
in which the functions «, 8, ¢ are constant, and of Merton [34] where also
B = 0. The analysis of (2.1) is very simple. Taking

13
I{t E/ﬂudu,
0

and multiplying (2.1) by exp(K;) we obtain
d(eK‘rt) = eKt(O'tth + aydt)

from which

t
(2.2) r=e Kt dpg + / eK“(auqu + v du)
0

This is a Gaussian process, for which

t
(2.3) o = Ery=e ro—i—/e_K“audu
0
sAt
(2.4) p(s,t) = cov(rs,rt):e_KS_K’/eQK“JZdu.
0
Thus
t
7y = /rudu ~ N(my, vy)
0
where
t u
(2.5) m; = /e Ko ro—i—/eKSozsds du,
0 0
t u s
(2.6) vy = Z/du/ds/dyaze_KS_K“'i'zKy,

and hence the bond price 1s

t

1
(2.7) Eexp —/rudu = exp <—mt + 51&)
0
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(2.8) = exp{—roB(0,t) — A(0,t)},

where for 0 <t < T
T

(2.9) B(t,T) /exp(—Ku + Ki)du,

t
T u s

/du/ds o el K —/dyaje_Ks_K“+2Ky

t t t

Thus this model is extremely simple, and the log-Gaussian distribution of
bond prices makes 1t very easy to price derivative securities. For example,
the price at time ¢ of a European call option to be exercised at time T" with
strike X on a zero-coupon bond of maturity 77 > T is simply

(2.10) A(t, T)

T
E |exp —/rudu {exp(—=r7 B(T,T") — A(T,T")) — x}r |7

t

which can be evaluated in closed form. Similarly the value at time ¢ of
a futures contract, delivery date T', on a zero-coupon bond with maturity
T >Tis

E(P(T,T")|F;) = E [exp(—r7 B(T, T") — A(T, T"))| F4]

which can again be evaluated in closed form.

Is the model well-specified? Hull & White argue that if one knows at
some time (0, say) the volatility of », and the volatility of bonds of all
maturities, then since

dP(t,T) = —P(t,T)d (r B(t,T) + A(t,T)) + %P(t,T)B(t,T)?dmt,

the volatility of the maturity-7 bond is oo B(0,7T)P(0,T); and, since this
is known, one can deduce B(0,7T) for all T. Then, since B(0,-) is known,
we can recover A(0, ) from (2.8). But now knowing B(0, ) we can find K
and therefore 3 from (2.9); and then differentiating A(0, -) gives

T s
BT A0, T) :/ asefs —/JjeQKy_sty ds,
0 0

differentiating once more gives

T
T (B A’(0, T) + A"(0,T)) = ape®™ — /0562Ky_KTdy,
0
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and another derivative gives
KT (283A'(0,T) + 38r A" (0,T) + B A'(0,T) + A”'(0,T))
= (a'T + 2Brap — 0'%) e?Kr,
This cannot be uniquely solved for a, o, but it gives us an equation
ap + 2prar —of = ¢(T)

for some known function ¢, and this could be satisfied by taking, for ex-
ample,

o7 = e+e(T)7,
oy + Q[J’TozT:5+go(T)+

for some € > 0 fixed. This model is also clearly extremely flexible, in that
any initial yield curve, and any initial term-structure of volatility can be
fitted. However, the estimation of the model from data is not practical.
Firstly, the yield curve is not some nice smooth curve known at all positive
real points; in practice, 1t is only known at a limited set of maturities
(typically 10-20), with dubious accuracy of measurement. Any procedure
which requires repeated differentiation of this “curve” cannot be expected
to work. Secondly, even if one could obtain estimates of the functions a, 3, ¢
from the data, there is no reason why we should get consistent estimates
if we performed the same analysis of the term-structure as it appears one
week later!

The best we might hope for is to restrict (e, 3, o) to lie in some small
parametric family, then estimate the parameters. The smallest interesting
family we could consider is the Vasicek model, where the functions are
constant, and the bond prices given by (2.7) simplify to

(2.11) — %t n 1_76_‘” (ro _ %)
(2.12) vy = % [Q[ﬂ — 34 4Pt _ e—?ﬁt] .

This special case 1s concrete enough for us to investigate the only unde-
sirable feature of these Gaussian models, namely that the interest rates
may be negative. Now in the Vasicek model, the limiting distribution of
ris N (a/ﬂ,O'Z/Qﬂ), so if we choose (a/f) to be reasonably large com-
pared with the standard deviation o /1/23, we might imagine that negative
interest rates will not be a problem. However, taking

1 1 i
a:§><10_3, ﬁ=§x10—2, 02:2 107°

we have

1
= 0.1 (iii) S log P(0,1) —0.02.
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The first tells us that in equilibrium the probability of a negative interest
rate is very small (about 3 x 1077 in fact), the second tells us that the mean
value of 7 1s 0.1, not an unreasonable annual rate — but the third tells us that
the bond prices grow exponentially, which is absurd! Admittedly P(0,1)
will not climb back to 1 for quite a long time, but a model which can do
this 1s a model which must either be rejected, or handled with caution. It
is not enough simply to hope that the problem can be neglected.

We should consider the spot-rate process to be r} rather than r;, but
then the tractable Gaussian behaviour is gone. We can say the following,
however.

ProproSITION 2.1. Suppose that r is a Gaussian process, Ery = pq,
cov(rs, ) = pst. Then

T T
0 < Fexp —/rudu — Fexp —/rj’du
0 0
T
< EBeBrll—exp|—E|efr /r;du JEe=Fr
0
T
where Ry = /rudu;
0
T
T Hs — fpstdt
(2.13) = Ee {1l —exp _/'\/pssG 0 ds ,
; Pss
where
1 2 -
(2.14) G(a) = E(W, —a)t = e~ 1?2 — 4®(a)

V2T

with @ the tail of the standard normal distribution. Thus

T T
0 < 1-F exp—/r:du /E exp—/rudu
0 0
T
T Hs — fpstdt
(2.15) < 1—exp —/\/,KG — 2 |ds
. Pss
REMARK 2.1. Using the inequality
e—a2/2

(2.16) G(a) <
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gives a good idea of the sizes of the quantities involved. For the example
of the Vasicek model,

«
Hs = ‘)"06_’68 =+ —(1 - 6_’68),
g
o2
= 55 <€—ﬁ|s—t| _ e—ﬁs—ﬁt) ’

0
T
o2
/pstdt = 7 {1 —ePs AT sinhﬂs} .
0

Taking the earlier example with a = % x 1073, 8 = 10a, 0% = % x 1078,
evaluating the bound for T" = 10 gives 0.014, for T" = 20 gives 0.041, for
T = 30 gives 0.078 and for T' = 50 gives 0.182.

Proof. The first statement is immediate, the second uses Jensen’s in-
equality and for the third, we use the result that if X and 7 are zero-mean
Gaussians, FX?2 = 1, then for any 6

Fe ?(X +6)” =exp (%EZ2> G(0 —cov(X, 7)).

d
REMARK 2.2. The estimate (2.13) is likely to be a good approxima-
tion to the difference between the bond prices using the Gaussian process
r, and the positive part of r. This is because the only approximation used
to reach (2.13)is 1 — e~ " < z. For small z > 0, the difference z — 1 +e77
is O(z?), and for larger values of z it is O(z), but in the expectation, the
distribution of 7, will have a rapidly decreasing tail if we have chosen pa-
rameters which make the probability of negative spot rates small. Thus
the approximation should be accurate.

3. Squared Gaussian models. We can escape negative interest rates
if we modify the variance structure in (2.1) to give

(31) d?’t = Ut\/Eth + (at - ﬂr'rt)dt,

where once again a, 3,0 : Rt — Rt are any locally bounded functions!.
The process r will remain non-negative if it starts non-negative, a great
advantage over the Gaussian models of the last section. Cox, Ingersoll &
Ross [13] introduced such processes as models for the spot rate (taking
a, 3,0 to be constant); the time-dependent version which we take here is
a generalisation due to Hull & White [27].

1 Tt can be shown, using the Yamada-Watanabe theorem and time-change, that (3.1)

has a pathwise unique strong solution if 3o =2 is locally bounded; see, for example, V.26,
V.40 of Rogers & Williams [38].
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These models are particularly tractable because, like the Vasicek model,
the yield curve 1s affine in the spot rate. More precisely, we have the fol-
lowing formula for the bond price:

(3.2) P(t,T) = exp{—rB(t,T) — A(t,T)} (0<t<T),

where B solves the Riccati equation

(3.3) B, T) - %JEB(t,Tf - 6;B(t, T)+1=0, B(T,T)=0,

and A solves the simple first-order equation

(3.4) A(t,T) = —a;B(t,T), A(T,T)=0.
It should be emphasized that the functions A, B used above are not the
same as the functions A, B in the previous section ( (2.9), (2.10)). Indeed,
no simple closed form is available in general for A, B, though in the case
of constant «, 3, ¢ we have the (Cox-Ingersoll-Ross) formulae

9 Br/2
(3.5) At T) = -= 7

o2

~cosh yr + %ﬂ sinh y7
sinh y7

(3.6) B(t,T) = T ,
v coshyr + 5@sinhyr
where 7 =T —t, 2y = (6% + 202)/2.

Compared to the simple Gaussian models of the last section, these
models are more realistic, in that the spot rate stays non-negative, but not
so simple, because one has to solve the Riccati equation (3.3). Tt is well
known that (3.3) can be reduced to a second-order linear equation, and a
brisk treatment of this i1s given in Appendix A.

All of the objections raised to the estimation of the Gaussian models of
the last section apply equally well here, in particular, the functions «, 3, o
cannot be uniquely determined from the term-structure and term-structure
of volatility, and any attempt to recover them from the data involves dif-
ferentiating up to three times. Jamshidian [28] has studied this class of
models, and finds that if one restricts a, 3, o by insisting that a/o? is con-
stant, then certain simplifications result, and for given A(0, -), B(0, -) there
are unique o, 3, o satisfying ac~? = constant. To see why this restriction is
natural, let us approach the problem from the other end, starting with the
constant-coefficient Cox-Ingersoll-Ross model, and see what perturbations
we could make to it. This work is done with Wolfgang Stummer.

One thing we could do is to make a deterministic C? time-change, and
thus represent the bond prices as

(T)
(3.7 P(t,T)=FE |exp— / rudu|Friy |,
7(t)
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where r is a standard Cox-Ingersoll-Ross process, solving (3.1) with con-
stant «, 3, 0. If Py(x, 7) denotes the price of a bond of maturity 7 when
the initial spot rate is x and the spot-rate process is r, then Py is available
in closed form (from (3.2), (3.6)) and from (3.7) we have immediately
that

(3-8) Pt,T) = Po(r(n), 7 —m)

E exp—/r&r(ru)du|f7(t)
t

(3.9) = Po(pi/m, 70 — ™),

where p; = 1/r(7¢) is the spot rate process, relative to the given time scale.
(To see this, observe that —% log P(t,T)|r=¢+ = fu: is the spot rate, and
now differentiate (3.8) with respect to T'.)

Routine methods of stochastic calculus show that p solves a stochastic
differential equation

(3.10) dpr = or{\/pedWy + [a(r])* — (8] — '/ ) pi] dt.

More important, however, is the fact that with this model, one may fit any
wnitial term structure exactly. This is trivial; we know that for fixed ¢ the
function T +— P(¢,T) decreases continuously to zero, and we use (3.8)
and (3.9) to tell us what should be the function 7. (The initial slope 7§ is
indeterminate, and could be chosen to match up the volatility of the spot
rate, for example.)

A second simple transformation of the basic CIR model that we could
perform is to multiply by some positive C! function g. It is easy to check
that if we define #; = g4p¢, then 7 solves the SDE (3.1) with

(3.11) o = 0T\/41,
(3.12) a; = acl/o?,

(3.13) By

11 !
;T 9t
pri - %

7 - .
Ty gt

Given any functions o, > 0 and f,, we can always choose 7 increasing and
g > 0 to make (3.11) hold.? To summarize then, the processes satisfying
(3.1) with 0;2% = constant are ezxactly those obtained from a standard
Coz-Ingersoll-Ross process by deterministic C? time-change, and multipli-
cation by a deterministic C' function.

REMARK 3.1. Suppose that X is a Gauss-Markov process in R4
solving

1 1
dXt = iatth - §ﬂtXtdt

2 Write v = 7/ > 0, so that v2g = 02/0? is known, and, multiplying (3.13) by vg
we find Byvigr = B(v2g:) — (vege)' = Bo? /0% — (vege)’; now this is easily solved for vi gy,
and hence we deduce v, g;.
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Then if 7, = | X¢|?, and o, 3 : Rt — R, simple Ito calculus reveals that
. d 5
(314) d?”t = O't\/EdZt + Zat — ﬂtrt dt

where W is Brownian motion in R? Z is Brownian motion in R. Compar-
ing (3.14) with (3.1) shows that 4a;/0? is the “dimension” of the Gaussian
process and so it becomes less surprising that the condition a¢? = constant
should make an appearance. It also explains the title of this section! For
those who are familiar with such things, we are in the land of Bessel pro-
cesses (for a recent survey, see Revuz & Yor [36]), which also appear to
be connected with the Ray-Knight theorems on Brownian local time (see,
for example, Rogers & Williams [38]) and diffusion limits of branching
processes; these things are all very closely related.

The squared-Gaussian and Gaussian models have an affine yield, but
what other processes are there with this desirable property? This question
has been answered in various forms (see Cox, Ingersoll & Ross [14], Brown
& Schaefer [6] for example). Following [14], we shall consider the spot-rate
process to solve the SDE

(3.15) dry = o(t,r,&)dW; + u(t,r,&)dt

where & = (&(t))7_ is a vector of exponentially-weighted past values of r,

t

(3.16) &) = e Mt / Aietitr,du
so that

If now we require that

y(t,T) = —log P(t,T) = A(t,T) + B(t, T)rs + zn: Ci(t, T)E:(t)

i=1
1

then applying Ito6’s formula to the martingale exp <— [ ru du) P(t,T) gives
0

(3.18) %B(t,T)%(t,r,E)z — A(@,T)—r— B(t,T)r— pu(t,r,&)B(t,T)

— D G D& + NG, T)(r— &)} =0
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where, as before, a dot denotes differentiation with respect to ¢t. Hence

A r B
56T = gy T

_ {E(t,T)& + X5 (6 T)(r - &)} :

Now the right-hand side of this is the same for all T' > ¢, so taking the
difference for two values of T'> ¢ we deduce that o(t,r, )% must be of the
form

plt,r€) = 5B Tl r. 6 -

—

(3.19) o(t,r, &) = Jo(t)2+0(t)2r+20i(t)2&,
and from this
(3.20) p(t,r,€) = po(t) + pu(t)r + Y pi(t)éi.

Returning these to (3.18) yields differential equations for A,B,C, which
can always be solved numerically.

REMARK 3.2. (i) The Gaussian models appear if we take o; = 0,
oc=0in (3.19), and yg; = 0in (3.20). The squared-Gaussian models arise
when we take 0g = 0 = o; in (3.19).

(i) If we were to insist that oo(-), o(-), o:i(-), po(*), p(:), and p; (")
were all constants, we have a wide range of possible models available to fit
any given yield curve, though the analysis will not be particularly simple.
Nonetheless, it may be preferable to use one of this class of models rather
than one of the time-dependent versions.

(iii) All of these models are single-factor models, and can be criti-
cized on these grounds. Other single-factor models have been proposed by
Dothan [16], Brennan & Schwartz [4], Courtadon [11], and Cox [12] (see
also Beckers [3]); none of these appears to be conclusively superior to the
models discussed already, and all have lost the analytical tractability of the
models discussed above.

4. Multi-factor models. The single-factor Markovian models dis-
cussed so far are often criticized on the grounds that the long rate is a
deterministic function of the spot rate, and that the prices of bonds of
different maturities are perfectly correlated. These defects might perhaps
be forgiven if the models appeared to match observed prices, but, as we
shall review in Section 7 the weight of empirical evidence suggests that
multi-factor models do significantly better than single-factor models.

In the last few years, there has been a rash of papers all dealing with the
same broad class of models, the higher-dimensional squared-Gauss-Markov
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processes. This title is longer (and less informative) than the SDE defining
them:

(41) dXt = O'tth =+ (Clt + CtXt)dt
1
(4.2) Ty = §|Xt|2a

where W is a Brownian motion in R”?, and o,C : RT — R* ® R”, a :
R' — R” are deterministic locally bounded functions. As was remarked
above, the Cox-Ingersoll-Ross single factor models are obtained in this way
if their dimension is integer. The papers known to me which deal with
this class of models are Beaglehole & Tenney [2], El Karoui, Myneni &
Viswanathan [21], Duffie & Kan [17], Constantinides [10], Jamshidian [28],
although the starting points do differ in these various papers. They all
end up with essentially the same class of models, examples of which were
already studied by Cox, Ingersoll & Ross [13], Richard [37], and Longstaff
& Schwartz [33].

The attraction of this class is that there is a (semi-)explicit formula for
the bond price: it is easy to prove that

1
(4.3) P(t,T) = exp {—EXtTQtXt + b7 Xy — 'yt} :
where (@ solves the matrix Riccati equation
(44)  T+QC+(QC)T+Q-Qoo"QT =0, Q(T.T)=0,
and b, v solve

(4.5) b — Qa—(QoeT —CT)b=0, (T, T)=0,
(4.6) v = bla-— %tT(O'TQO') + %bTO'O'Tb, ¥(7T,7) = 0.

This class of processes, and the differential equations (4.4)-(4.6), have been
around for a long time in the world of stochastic processes, going back at
least to Cameron & Martin [7]; see also Feller [22], Liptser & Shiryaev [31],
and, for recent work, Donati-Martin & Yor [15], Rogers & Shi [39], Chan,
Dean, Jansons & Rogers [9].

Though the matrix Riccati equation (4.4) can easily be solved numer-
ically, there are only closed-form analytic solutions when the problem is
one-dimensional, or can be reduced to independent one-dimensional pro-
cesses; in general, the analysis of this class of models is sticky. Interest in
these models will undoubtedly continue for some time to come; Duffie &
Ken [17] have formulated the most general affine yield multifactor model,
which appears to have closed-form solutions only in the special case of
independent CIR processes (or some equivalent situation). Nevertheless,
numerical solution i1s always a possibility.
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By passing to multi-factor models, one should get an improved fit,
but there i1s a heavy price to pay; if one wants to calculate prices of, say,
options on bonds, the PDE to be solved is higher-dimensional, and will
thus be much slower. Perhaps even more importantly, the factors used
have to correspond to some observable variables if the formulae are ever to
be used. Cox, Ingersoll & Ross [13] and Richard [37] both take the spot
rate together with the rate of inflation, Longstaff & Schwartz [33] use the
spot rate together with the volatility of the spot rate, and Duffie & Kan [17]
use the yields on a fixed set of bonds, for example.

Outside of this class of squared Gaussian models, there are many which
have been proposed, but I highlight just two. The first of these is the model
of Brennan & Schwartz [4], which takes as the variables of the (two-factor)
model the spot rate r and the long rate. As a proxy for the long rate, Bren-
nan & Schwartz use the reciprocal of the price of a consol, which is a traded
asset. This is a nice idea, and clarifies the analysis, though their pricing
equation still has to be solved numerically. They use the model to analyze
Canadian Government bonds, and obtain impressive results. A variant of
the basic model is subsequently studied by Schaefer & Schwartz [40], who
take the spot rate and the spread as the variables. In this context, it is
worth recalling a result of Dybvig, Ingersoll & Ross [19], who prove that
the long rate is non-decreasing. This makes one a little wary about a model
which supposes that the long rate moves as a diffusion, even if only in the
form of its proxy, the reciprocal of the consol.

The final model is the model of Fong & Vasicek [23], who take the spot
rate r to follow the Ornstein-Uhlenbeck SDE (2.1) with constant a, 3, but
with o itself following an independent squared-Gaussian diffusion. The
model has a simple affine yield structure, which is attractive, but also the
risk of negative spot rates. Whether this model is any better than a two-
factor squared Gaussian model cannot be decided at a theoretical level,
and must be resolved by comparing results on real data.

5. Whole-yield models. The approach adopted in whole-yield mod-
els is to model directly the forward-rate processes (fir)o<i<r for each T.
The earliest (discrete-time) appearance of this approach was due to Ho &
Lee [26]. In view of the fact (proved by Dybvig [18] and Jamshidian [28])
that the continuous-time limit of the Ho & Lee model is

d?"t = gtdt + O'th

for some deterministic function #, it has not been adopted unreservedly.
This possibility of spectacularly negative spot rates, together with the
single-factor nature of the model, has led to more refined models, the main
one being the model of Heath, Jarrow & Morton [25]. The same model was
developed independently and contemporaneously by Babbs [1]. The idea
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here is to model the forward-rate curve by
1 1
(5.1)  for = for +/a<s,T)dWs +/a<s,T)ds (0<t<T),
0 0

where W is an n-dimensional Brownian motion, and (fOT)TZO 1s the initial
forward-rate curve. The functions ¢ and « cannot be chosen unrestrictedly;
indeed, Heath, Jarrow & Morton prove that in fact

(5.2) alt,T)=0c(t,T) got—i—/a(t,s)ds ,

where ¢ is some n-vector previsible process which is zero when working in
the risk-neutral measure. In fact, this structure becomes almost obvious
when looked at in the right way. Indeed, if we consider the martingale
(with respect to the risk-neutral measure)

T 1 T
(5.3) My = F |exp —/rudu |Fi| = exp —/rudu—/fmdu
0 0 t
we know that it can be represented in the form
# #
(5.4) M; = Myexp —/E(s,T)dWs - %/|E(S,T)|2ds
0 0

for some previsible n-vector process X(-, 7)) (any martingale on the Brow-
nian filtration can be represented as a stochastic integral, and hence easily
any non-negative martingale on the Brownian filtration is representable
as an exponential of a stochastic integral.) Taking the two expressions of
log M; from (5.3) and (5.4) and comparing the martingale parts shows
that

T

(¢, T) = /a'(t,u)du,

i
and now differentiating with respect to T' gives (5.2), and also (5.1) when
¢
we remember that log My = ff()udu.
0

Of course, various regularity conditions are needed to justify this, and
indeed further regularity conditions (which are not made explicit in [25])
are need to ensure that

h =
71{? fir =y
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exists, is continuous and defines a semimartingale (none of which need
hold in general). However, such points are trivial in comparison to real
objections to the use of the model in practice. Heath, Jarrow & Morton
give two examples where there are simple formulae for bond prices, but
where 7 is allowed to go negative; and they give an example where r >
0, but there are no simple formulae. It appears very difficult to obtain
both of the desirable properties together, not least because this approach
begins by trying model derived quantities (the forward rates) instead of
the fundamental quantity (the spot rate) and thus loses control.

If one ever could find a specification of the model where r > 0 and
where bond prices were given by a simple formula, then one could just
as well obtain this by starting directly with the spot rate process r! So
these whole-yield models appear to offer no advantage over the approach
of modelling r, although the ability to input the initial yield curve directly
and to vary the volatilities of different forward rates are attractions (partly
shared by some of the models of the preceding sections.)

6. Equilibrium or arbitrage pricing? Cox, Ingersoll & Ross [13] in
their paper on term structure of interest rates discussed (in Section 5) the
comparison of their own equilibrium approach and the arbitrage approach.
What they wrote there appears to have caused considerable confusion about
the relation between the two; the aim of this section is to prove that the
two are essentially equivalent.

To begin with, we suppose that (S;)o<i<r = ((S2,..., SP))o<i<r is an
(n+1)-vector continuous semimartingale of financial asset prices. The first
component S° is non-decreasing, and represents the price of a riskless bond.
There will be a single productive asset whose price at time ¢ is &;, where
¢ is also a continuous semimartingale. Prices are in terms of the unique
commodity of this economy. An investor starts with wealth xz, and holds
a self-financing portfolio (#;, H;) in the financial assets and the productive
asset respectively. He consumes at rate C; > 0 at time ¢, so his wealth at
time t, X;, obeys the wealth equation

(6.1) dX,
Xi

0,dS; + H.d¢, — Cydt,
0:S: + H&s, Xo=z.

The investor aims to choose (6, H) so as to

T
(6.3) maxE/u(C’s)ds subject to X; > 0 for all ¢ € [0,T].

0

We shall say that the price processes (S,¢) constitute an equilibrium for
this model if under optimal play the investor invests nothing in the finan-
cial assets. This terminology bears the usual interpretation; we imagine
a number of identical investors, all investing in the market. The financial
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assets only exist by virtue of some agents going short, some going long; the
net supply of financial assets is zero. The productive asset has a physical
existence, however.

We assume the utility function in (6.3) to be strictly increasing, C?,
strictly concave and unbounded above. Thus if (S,€) is an equilibrium,
there must be no arbitrage (otherwise the investor would be able to make
unlimited gain, and his utility-maximization problem would be ill-posed).
It is a folk theorem of the subject that no arbitrage implies the existence
of an equivalent martingale measure. Without pausing to examine the
exact result (which, in any case, has not yet been formulated correctly),
we concentrate on the converse.

THEOREM 6.1. Write B, = 1/S?, and suppose that there exists a
measure P equivalent to P such that under P the process S = S is a local
martingale. Define the P-martingale 7 by

dP

Z=3p

Fi

If we now take U(z) = logxz, & = 1/P:7;, then the optimal policy for the
mnvestor is

L= . ) t
(64) Ct = f&t, gt = 0, Ht = <1 - T) .

REMARK 6.1. What this says is that if there exists an equivalent mea-
sure under which all the financial asset prices, when discounted, are local
martingales, then there is an economy which supports these as equilibrium
prices: The reason that the example of [13] does not violate this is as fol-
lows. Cox, Ingersoll & Ross are working in a Brownian framework, where
a change of measure corresponds to introducing a drift into the Brown-
ian motion. However, not every possible drift corresponds to a change of
measure, and what they have done is to consider a drift which does not
correspond to such a change of measure! To quote Cox, Ingersoll & Ross,
“The difficulty, of course, is that there is no underlying equilibrium which
would support the assumed premiums” — but, on the other hand, there is
no risk-neutral measure either!

Proof. With the portfolio and consumption plan (6.4), the wealth
process 1s

and 1t 1s two lines of calculus to confirm that this solves the wealth equa-
tion (6.1). Reworking the wealth equation (6.1) for general portfo-
lio/consumption,

(6.5) d(8;X;) = 0,dS; + Hydé, — B,Cdt
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(where 5} = (i&y = 1/74) so that

13 13

0

0

Now under P, both S and é are local martingales, so by Fatou’s lemma

T T
(6.6) x> FE /[)’uCudu =F /ﬂuZuCudu
0 0

for any feasible consumption plan. The proof is completed by a simple
“Lagrangian sufficiency” argument. As a piece of notation, we set for z > 0

(6.7) U.(@) = sup{U(c) - ac)
UI(x)) - #1(a),

A
o
)

=

|

where [ is the inverse to U’ (in fact, the second line only holds if U’
decreases from infinity at 0+ to zero at infinity, which is certainly true
when, as we assume here, U = log)®. Now for any A > 0, we have for any
feasible consumption process

T T T
(6.9)E/U(Cs)ds < E /U(Cs)ds+/\ m—/[)’uZuCudu
Q Q 0
T

Az + E [{U(Cy) = \3,7Z,C,}ds

IN

Ar+ FE | Ud(ABs Z5)ds

= Xx+ B [{UI(MB:Zs)) — A3: Zs I (B, Zs) }ds.

Ty Ty O

Now if we write C2 = I(AG; Z,), then provided A were chosen so that the
“budget constraint” (6.6) is satisfied with equality, that is

T T
(6.10) r = E/ﬂSZSdes = E/[)’SZSI(AﬂSZs)ds,
0 0

3 Uk is the convex dual of U, and U(z) = inf, {U«(y) — zy}
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then (6.9) becomes simply
T
E / U(C)ds.
0

However, we can achieve (6.10) in general, and trivially in this case where
I(z) = 1/x simply by choosing A = T/z! Assembling the inequality, we
have to conclude that for any feasible consumption plan C'

T T T
E/U(Cs)ds < E/U(cf/f)dsz E/U(C;“)ds,
0 0 0

and the proof is complete. O

Dybvig & Ross [20] have already remarked on the essential equivalence
of ‘equilibrium’ and ‘arbitrage’ pricing. I understand that Heston has a
similar argument, reported in Exercise 9.3 of Duffie’s book Dynamic Pricing
Theory.

7. Empirical aspects. A recent search of a computer data base
turned up 135 articles which referenced the fundamental paper [13] of Cox,
Ingersoll & Ross; of these, about 75% were principally theoretical. Of the
papers which are principally empirical, T discuss here only a few, but I
think the conclusions reported give a good feel for what has been deduced
from data so far; no strongly-preferred model emerges, but some models
appear to be inadequate.

The first problem to be faced is that there are very few zero-coupon
bonds traded; US Treasury bills seem to be the only ones for which much
data is available, and the maturities only go out to about a year. One is then
faced with the problem of estimating the yield curve from other (coupon-
bearing) bonds, and possibly other information. Anyone who works on
interest rates, be they practitioner or academic, has a way of making a
yield curve from such data, or has a source of yield-curve data where this
information has already been stripped out or “estimated” and we shall not
discuss further how these are obtained.

Most of the papers have some model, or class of models, in mind, and
proceed to test the model, or some feature of it. The most common class of
models is the class of squared-Gaussian models with one or more factors,
though Chan, Karolyi, Longstaff & Sanders [8] cast their net wider and
take their class to be (single-factor) models where r solves an SDE of the
form

dry = or] dW; + (a + Bry)dt

where the parameters a, 3,7 > %, o are to be estimated. This includes

the CEV model of Cox [12] (see Beckers [3] for a description of the model),
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for example. The one-factor squared-Gaussian (Cox-Ingersoll-Ross) model
is tested by Brown & Dybvig [5] using a least-squares fit, and by Pearson
& Sun [35] using exact maximum likelihood. Both conclude that the one-
factor model does not satisfactorily fit the data. On the other hand, Gib-
bons & Ramaswamy [24] find that it does perform quite well on the short-
term Treasury bill data. Multifactor squared Gaussian models are tested
by Stambaugh [41], Longstaff & Schwartz [33], and Litterman, Scheinkman
& Weiss [32], who all conclude that introducing additional factors signifi-
cantly improves the fit; in fact, using two factors appears to be satisfactory
from the work of these quthors, although Pearson & Sun [35] do not find
that two factors are sufficient.

The generalized method of moments is a popular approach to the esti-
mation. Despite the arbitrariness of the procedure, it has some attractive
features; the large-sample behaviour does not depend on specific distribu-
tional assumptions, needing only that the spot rate process be stationary
and ergodic. A little care is needed here; Chan et at. [14] conclude that
Dothan’s [16] model, the Cox CEV [13] and the Cox-Ingersoll-Ross variable-
rate model all do better than Vasicek or the standard Cox-Ingersoll-Ross
squared-Gaussian, but these three diffusions are not ergodic, so the results
must be interpreted with caution.

The outcome of the empirical studies seems to be that a two- or three-
factor squared-Gaussian model is reasonably satisfactory, but there is one
conclusion that most agree on, namely, that more work is needed here!

8. Conclusions: where now. Long before stochastic calculus hit
the industry, bonds were being traded; practitioners had a good idea what
prices to charge, and were exploiting their knowledge of the market, and
hunches about the future, to guide them. It is futile to imagine that increas-
ingly sophisticated mathematical models will replace or displace such skill,
and what is needed now is not more (and more complicated) mathematical
models, but rather a serious attempt to combine practitioner input with
(probably extremely simple) mathematical models; no mathematical model
based on assumptions of time-homogeneity can ever represent a world of
elections, trade figures, summits and treaties.

One thing which does appear to be well worth doing (of a more aca-
demic nature) is to try to model index-linked bonds. Asking practitioners
what they consider the main influence on term-structure, the response 1s
that anticipated inflation is the most important effect. By removing that,
through studying index-linked bonds, we may be able to see a more or-
derly pattern emerging, just as one does with share prices when the “oper-
ational time” effect is removed (see, for example, the working paper “Some
statistics for testing the influence of the number of transactions on the
distributions of returns” by S.E. Satchell & Y. Yoon.).
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A. Appendix. (i) We take r to solve the SDE

(Al) dT‘t = O-f\/Eth =+ (O.’t - [)’frt)dt

so changing variables to z; = 2r;/0?, we find that
2

(A?) dZt =V QthWt =+ # - ﬂtzt - 2(5't0't_12t dt.
oy

For notational simplicity, set a; = 20”0';2, by = 61 + Qé'tot_l, so that the
bond price P(z,t,T) (0 <t < T) satisfies for fixed T'

. 1
(A.3) P+ 2zP"+(a—bz)P' — 5a?zp =0,

where a dot denotes differentiation with respect to ¢, and a dash denotes
differentiation with respect to z. This PDE has a solution of the form

P(z,t,T) =exp [z B(t,T) — A(t, T)]

provided

: 1
(A 4) B—-B*-bB+ 502 =0, B(T,T)=0
(A.5) A = —aB, A(T,T)=0.

(Note that, because of the change of variables to z, what was denoted by
B(t,T) in Section 3 is here denoted 2B(t,T)o; ?; the change of notation
should cause no confusion, and is particularly convenient for the purposes
of this section.)

Writing

(A.6) B(t,T) = =4 (t,T)/9(t,T),

we can recast (A.4) as

(A7) b — b — %0’21/) _o.

Let us write ¥4+ for two linearly independent solutions of this second-
order linear differential equations; we shall choose 14 to be increasing

non-negative, ¥_ to be decreasing non-negative, ¥4 (0) = ¥_(0) = 1,
¥ (0) = 0.* In terms of these, if we set
(A.8) W(t, T) = - ()4 (T) — by (£ (T)

4 To see that such a choice is possible, if we let z be the solution to the SDE
dzy = dWi — b(x¢, T) sgn(z¢)dt
t
and if Hy, = inf{t : 2y = a}, ¢t = f %a(mu,T)%lu, then we can take v_(z) =

0
Eyexp{—¢(Ho)}, ¥4 (z) = 1/E° exp{—¢(Hz: AH_3}.
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then

bt T) _
v, T)

is the solution to the Riccati equation, and the form of A is

(A.9) B(t,T) = — gtl g b(t, T)

T
(A.10) A, T) = /auB(u,T)du.

(i1) Tt is of interest to consider the inverse problem, that is, if we are
told the initial functions B(0,-), A(0,-), can we find some process of the
form (A.1) which would give these A, B? This needs an understanding of
how B(t,T) varies with 7. Now

0

= B(t.T)

Br(t,T)

- 8taaT log (¢, T)

9y ()"/)+(T)
Ot ()94 (T) —
9 5 ¥

T bT+2 1/)_(3
&l

Y(t, T)*

1
(A.11) = Ea’%

where

(A.12) € = ¥ (s (6) — v (O (1) = ¥(2,1).
If we define y(¢,T) = - ()4 (T) — ¥4 (t)y—(T), then we have after some

calculations

) 0 o 207 7(tJT)
(A.13) a—TlogBT(t,T) = o —bT—a%W’T)
_ 2 Py(taT)
IR

and differentiating once more, and rearranging, one gets after some calcu-
lations

52 ) 1/0 ’
(A.14) =5 log By (t,T) = —f — o} —ﬂT+ 5 log Br(t,T) ) .

If we were in the special case where a was constant, then knowing A(0, -)

would tell us, from (A.9), (A.10), the function

log 1/)(T: T) - log 1/)(07 T)
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and if we differentiate this with respect to 7', we get

_10_2 V(Oa T)
2 T(0,7)

Combining with (A.13) would tell us what the function g should be, and
now returning this to (A.14), we deduce the function o?. But notice that
to recover the coefficient functions 2, 3, we have had to differentiate the
bond prices three times.



