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INTERACTING BROWNIAN PARTICLES AND THE WIGNER LAW
by
L.C.G. Rogers & Z. Shi*

Queen Mary & Westfield College, University of London

Abstract: In this paper, we study interacting diffusing particles governed by
the stochastic differential equations dX;(t) = 6,dB;(t) — Vi¢n(X1,..., Xn)dt, j =
1,2,...,n. Here the B; are independent Brownian motions in R?, and Pnlz1,. .. 20) =
and 2 ig; V (i — ;) + 0,22, U(z;). The potential V' has a singularity at 0 strong
"enough to keep the particles apart, and the potential U serves to keep the particles
from escaping to infinity. Our interest is in the behaviour as the number of particles
increases without limit, which we study through the empirical measure process. We
prove tightness of these processes in a very general setting, and then take the special
case of d = 1,V(z) = —log | z |,U(z) = 2%/2 where it is possible to prove uniqueness
of the limiting evolution and deduce that a limiting measure-valued process exists. This
process is deterministic, and converges to the Wigner law as ¢ — 0o. Some information
on the rates of convergence is derived, and the case of a Cauchy initial distribution is

analysed completely.

Keywords and phrases: interacting Brownian particles, Wigner semi-circle law,

empirical measure process, weak convergence.
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1. Introduction
We are going to consider in this paper systems of interacting Brownian particles in R¢

(but, very soon, R) governed by

(1) dX i(t) = 0ndBi(t) ~ Vida(X1, ..., Xa)dt, §=1,2,...,n,

where the B; are independent Brownian motions in R¢, and the interaction potential
¢y 18 of the form

qsﬂ(ml: < 73:?3) = anz Zl-#jv(mi — 25) + 0 E U(z;).

* Supported by SERC grant number GR/H 00444

1




Such equations have been studied by many others, going back at least to McKean [3];
see Sznitman [8] for an overview and many other references. Qur interest here is in
examples where the interaction potential V(z — y) blows up in some way as z — y,
but is otherwise reasonably smooth. The external potential U/ will also be assumed
to be well-behaved. The singularity of V destroys most of the analysis done on nicer
examples. For one thing, questions of existence and uniqueness of solutions to the
n-particle system (1) become nontrivial, unless it is possible to prove that particles
never meet. Does the equation (1) have some kind of “strong law” limit behaviour as
the number of particles n — 00?7 Such a limit process would have to be characterised

in terms of the lmit of the empirical measure processes,

n
Z X;(0)

Elementary calculations with Itd’s formula (assuming that there exists a pathwise-

SIH

unique strong solution to (1) with the property that the particles never collide) give

(2) d(py, f) = ZVf(X )dB; + = (ﬂ?,Af)dt

j=1

“% Z V(X)) {200 Y VV(X; — X,)}dt — 6, (7, V- VU)dt,

Jj=1 r#j
where (g, f) = [ f(z)p(dz), and f € CE(R?). Making now the assumption that
V(z)=V(-z), z€R’,

we see that

(3) d(up, f) = dMP —na, ( [/ IRVZICR N y)#?(dﬂ’)ﬂ'?(dy)) at
TFY
0_2
_9ﬂ<#?1 Vi VU)dt + ?n(”:‘.la Af)dtv
where dMT = n™1lo, 2?:1 V f(X;)dB; is (the differential of) a continuous martingale,
with

d[M™ o &
M~ 2 S v P
j=1



It is now tempting to conjecture that if 8,, = 8, @, = a/2n, and ¢2 — o% (n — o0),
then the empirical measure processes (uy ) should converge to a measure-valued process

(1) satisfying

(4)  dps f) = —% ( / f {x#y}(vf(w) - Viy)VViz — y)m(d“’)#t(dy)) dt

2
o
_8(”& Vf VU)dt + 7(”’63 Af)dta
for all f € C}R?). The quadratic variation of the martingales M"™ disappears in

the limit, leaving an entirely deterministic evolution equation. There are, of course,

numerous questions to be answered before this heuristic can become a proof:

(5.1) Is the finite particle process well defined?
(5.i1) Is the double integral on the right-hand side of (4) well defined?
(5.i1) Is the family {(p})i>o;n =1,2,...} tight?

and very importantly
(5.iv) Does (4) characterise (p;) uniquely?

The way we have written the double intergral in (4) helps to answer (5.ii), in the sense
that if the singularity of V' at 0 is not too bad, then it will be neutralised by the
term Vf(x) — Vf(y). The issue of tightness is not too hard in practice, but, as with
the martingale-problem method applied to multidimensional diffusions (see Stroock &
Varadhan [7]), it is the uniqueness assertion which is the hard work. We have as yet
no general results; this paper is devoted to the study of one particular example. This

example is in dimension d = 1, taking

6) V()= —loglz] U)= et ans L0, 0a=050, o= (22)
() (3:— O T w—“zwaan—gn sy Yn = y In = n ?
so that (1) reduces to
20 o dt
s = af —dB,; 4+ — — — 0X.dt.
() aX; n J+n§;Xj'—Xr I

This random motion of particles with electrostatic repulsion and linear restoring force

arises in a natural way in the study of the eigenvalues of a randomly-diffusing symmetric
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matrix; see McKean [3], Dyson [2], Norris, Rogers & Williams [4], and Pauwels &
Rogers [5], p. 254. The eigenvalues of a randomly-diffusing symmetric matrix obey
the equation (7) with # = 0. The case 6 > 0 just corresponds to a matrix diffusion of
Ornstein-Uhlenbeck processes, rather than Brownian motions.

This interacting SDE has recently been studied by Chan[1}, who uses different methods
to establish the main result under certain additional assumptions. We were unable to
follow the argument provided in a number of places. The approach adopted here is
more concrete, in that it exploits special features of the example studied, and makes
clear the parts of the argument which will not go through in a general setting.

The plan of the rest of the paper is as follows. In §2, we prove that (under suitable
conditions on the coeficients) provided the particles start at different places, they
never meet; this is established for general C? external potential U and the logarithmic
potential V. The main result of §3 is that tightness of {(#})i>0 : n € N} is equivalent
to the much simpler task of showing tightness of each of the real-valued processes
({1}, i) t>0 for some suitable sequence (f;) of test functions. From this we deduce the
tightness of the empirical processes. The most interesting part of the current work is in
§64-5, where we exploit the special features of the problem. In §4, we take U(z) = 2%/2,
flz) = (z —2)"!, where z e H= {w € C: Im w > 0}, and we use (4); a little algebra
yields the PDE

2 M(2) = (aMy(z) 4 02) EM(2) + OMy(2)
Mo(z) = [ talde)

where

Mt(z)E/&f(—dQ

v—z
It is the analysis of this which provides the proof of uniqueness (5.1v). In §5, we pursue

the analysis further to complete the main result of this paper:

THEOREM 1. Assume the explicit form (6) for the potential ¢.

(i) The limiting measure-valued process

(P"t)tzo = W'limn—roo(#?)tzo

exists and is the unique continuous probability-measure-valued process satisfying

o )= o, 1) = 3 [ ao( [ [ DI, oy a)
— 9/; ds{ps, U' f').
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(i) Ast — oo,
Ht = pw,

where pw is the Wigner semicircle law with density

g (2« 2 2I
mal\e  ° (l2]<+/278)"

We then exploit the explicit form for the solution to the PDE for M to obtain more
detailed information on the rate of convergence in Theorem 1, under the assumption
that uo has a finite first moment. Finally, we compute My(z) explicitly when pg is a
Cauchy law. One interesting feature is that y; has no moments for any ¢ > 0, even

though the limit law pw is compactly supported.

2. Non-collision of particles.

Let us assume from now on that we are in dimension d = 1, and that the interaction

potential is V(z) = — log |z|. We have the following result.

PROPOSITION 1. Suppose that the X;(0),j =1,...,n are distinct, that U is C?,
and that the processes X are defined by (1), at least up to the stopping time

T = inf{t: Xi(t) = X;(t) for some ¢ # j}.

If

2
4oy = 0,

then P(T = o0) = 1.

Proof. Consider

d(Bn( X)) = Dyba(X)AX; + 502 3 Asd( Xt
i
= Djpn(X,)ondB; + "2—“ Z Ajpa( X)) — Z D¢n(X0)? }§ dt.

Since U is C?, we have




so that the drift term is
0?21 2
D Ajgn = Y Diba(X)
J J
1 o6
_ 2 n"n " .
= an%z Zr?gj (z; — z,)? + 9 Z U™(z;)

i

2

_Z 20 Y _lm ~ 0,U' ()

-
r#j o

et e S e
- (20““) Z Z Zj,p,r distinct (;r:_, - wr)(mj - wp)
+ 4,0, ZU(mJ)Zm — __HZZU(_,)Z 0'9

r#j

U'le;) —U'(z,
= (ano2 — 4a2) ZZ#J T —{—20{,,9 zzrﬂ (25) (@)

Tj— Ty
crn n
—6L) U'(e) + 2= ) U"(z)),
J

j

(=5)

because the triple sum vanishes, as one sees by permuting the indices 7, p, and r in the

sum. The condition

2
day, > oy,

ensures that the drift term is bounded above. If it were the case that T' < oo, then
we would have limyr ¢n(X¢) = 400, and so the martingale part of ¢,(X:) would have
to explode to +o0o as t T T. This forces liminfyr ¢o(X:) = —o0; see, for example,
Corollary IV.34.13 of Rogers & Williams [6]. But this is impossible if ¢, is bounded
below, which we could always arrange by modifying U outside a large compact set.

The conclusion follows. O

3. Tightness.

In this section, we prove the tightness of the family {(#7)i>0 : n» € N}, and that any
limiting measure-valued process satisfies the evolution equation (4).

Let us pick bounded C*° functions f; : R — C (§ = 1,2,...) with the property

(8) (o f3) = (u', f) for all j = p= 4,
and pick a C° function fg : R — [1,00) with the properties
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fo(z) = fo(~2), fo(z) Tooasz 1 oo, z €R™.

We are going to consider the Polish space

S = { probabilities 1 on R : {g, fo) < o0},

with the topology given by the metric

d(p, ) =) 27 AN {p — 'y fa) D)

n>0

obtained by identifying

o0
s=TJ[s;

j=0
e ({1, i) 720
where Sy = R,S; = C,(j > 1). Notice that the topology on S is stronger than the
topology of weak convergence; if d{ iy, 1t} — 0, then

(ﬂ'nafﬁ) — (.Iu}fo)i

so the sequence (y,,) is tight. Therefore it contains a convergent subsequence, whose
limit point * must satisfy {u*, f;} = (1, f;), V5 > 0; thus g, = u, and p, = p.
Now we shall consider the Polish space
C(RT,S) = H C(R*,8;) = 3.
=0
(This is Polish, because it is the countable product of Polish spaces, which is Polish).

The empirical measure process (¢} )>0, 7 = 1,2,... which we consider will be random

g.’:18
IIE

elements of S.

Ifrm;: 58 5 is the jth co-ordinate projection, we have the following simple result.

LEMMA 1. A family (mqa)aca of probabilities on S is tight if and only if, for each
7, (ma o ’iTj_l)o,eA is tight on S;.
Proof. “=". If K C § is compact, then

K;=nj(K)={y€5;:(z0,...,Zj1,¥ Tj+1,...) € K for some z;}

is compact, and




K c [ &;
J

Thus if mo(K) > 1 — ¢, Vo, we have mo(I[; K;) 2 1 — ¢, V. So, for every a € A,

1—e< ma(HK ) < ma((J] 8r) x K;) = (ma o 77 )(K;),
r#j

so that (mq o W;I)QEA is tight.

“&”. If we take K; C S; compact, (mq 0 'n“j_l)(KJ-) >1—2"9"1¢ and set K = I1; K;,

we shall have

ma(K) = mo(| J(EE x [[ 5:)) ) (maori )K= O

>0 r#3 >0

The conclusion therefore is that in order to deduce the tightness of the sequence of
measure-valued process {(¢)i>0;n € Z}, it is sufficient to prove that for each j the

continuous real-valued processes

(s Ve, neZ?

are tight. This is a lot easier!

From (2) and (3) we have (using the fact that V{(z) = - log |z|)

du?, f) = U"Zf(XJ)dB + (uf, =02 " — 0,U f')dt

+ nandt/ ‘/{z#y} =y pe(dz )i (dy),

x

and the final term is

{nan f f %@n?(dwm?(dw—an(n?,f")}dt

so that

dul, f) = U“Zf(XJ)dB +<,ut,( 0% — ap)f" — 0,U' f)dt

+ nagdt f f fiz) = 7tw) '(2 S i ey ().
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Now let us adopt the assumptions (6) concerning the parameters: 8, = 6, a, =
«/2n,0n = (20/n)'/% ¥n. This ensures non-collision of particles, by Proposition 1.

Let us also assume from now on that

fj,f;-', U'f;- are bounded for all j € Z.

Thus we have

wr st - [ (8] [ B2 aanian) + [ otr v spas

© =3 I EAONAOTY NENCERIAY

Now the laws of the processes on the right-hand side of (9) are easily shown to be
tight; using next the assumption that U'f} and f! are bounded, the tightness of

{({2, fi))e>0 = n € ZF} follows from this for every j > 1. Tightness also follows
for 3 = 0 if we have

{¢g, fo} — finite limit (n — o0).

So let us suppose that the initial distributions pf have the property (1§, fo) < K for
some K, for all n. For given g, we could always find p§ and fo to satisfy this and the

other conditions, and this then gives the tightness for j = 0 also.

4. Convergence to the limit process when n — oo.

In this section, we show the weak convergence of 4™ when n — o0, to a measure-valued
process satisfying the evolution equation (4). By the tightness, we have at least that
§™ => p along a subsequence. Any such limit process g = (114; ¢ € RT) satisfies

(10) (pes, 3} = {0, £i) + f/./f’(m) ht) ps(dz)ps(dy)ds — 8 /(#s,U'f’)

Now let us take up the remaining assumption of (6), that U(z) = 2%/2, and set

i) = =

where the z; run through (Q x Q) NH. Then

My(z) = / ‘ut(d’t’), ze€H

v—2
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obeys

My(z) = Mo(2) + a /0 " ds f / (5”£d:))(’;”(_d22 +6 / ds / (@)

firstly for z € (Q x Q) N H from (10), then for every # € H by continuity. Simple
manipulations show now that M satisfies the PDE:

{ £ Mi(z) = (aMif2) + 02) & Mo(2) + OMy(2)
(12)

Mo(z) f uu(dv)

If we can show that (11) has a unique solution, then by property (8), we actually prove
the convergence of p™ - this time not only up to subsequences! - and thereby part (i)

of Theorem 1.

We first need a lemma.

LEMMA 2. For every z € H,A > 0 and o > 0, there exists a unique r = r(},s,2)

such that p
z=)\r~—a/ME)\r—aMo(r).

v—r

Proof. (Uniqueness) If vy # ry € H satisfy

(12) z:)\rj—a/M, (71=1,2),

'U*—-'."J'

then

Mry —rg) = a/,uo(dv) (U_lrl — vfrz) = Gjﬂo(dv)(v _?:Iisz_ r2)’

implying
tio(dv) _ A
(v—ri){v—rz) o

Writing r; = aj + 1b;, (f = 1, 2),b; > 0, we deduce that

(13) f(v_al)(v—@) by (o) = %;

o—ri Plo—13
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(14) /bl(v_a2)+b2(v_al)pg(dv)=0.

|v 7 2v—r2 |2

It follows from (14) that

v an bl + a4 bg Ho (dv)
15 dv) = ,
(15) f[v——r1|2|v—r2|2‘u°( ) by + by lv—ry Plo—ry |2

and since

(’U — (1'.1)('0 —_ ag) — blbz ;l —T2 !2 -i—(az — al)(v — ag) — bg — blbg,

we obtain from (13) that

i—" ‘uo(dv) + (a2 — a1)/| voldv)

o [v ry |2 -1y |Fv—rg |2

to(dv)
—{az(az —a1) + bg + b1b2)/ [v—ri Plo—1 |2

(15) pro(dv) (az — a1)(azbs + a1by) / pro(dv)
|v—r |2 by + by lv—r [2lo—ry |2

to(dv)
v—ry [2lv—ry |2

[(as — a1)® + (by + bz)z]/ - pro(dv)

—ri Plo—ry |2

— (az(ag — a1 ) + b3 + bxbz)] |

(12) A Imz ba

T o oby bitby
A
o

<

which is a contradiction.
(Existence) Let zp € H be fixed and let

qﬁ(r)EzG—!—a/If:(dv), r € H.

—T

So ¢ : H — H. We only have to show that Ar - ¢(r) has a zero in H. If not, we first
notice that, when 0 < Im(r) < Im(z)/2A,

Im(Ar — ¢(r)) < —Im(29)/2;

on the other hand, when Im(r) > Im(z;)/2X and r — oo, ¢(r) remains bounded, so
(Ar — é(r))~! converges to 0. Therefore, (Ar — #(r))™! is bounded analytic in H. Let

11



1

h(r) = o — g(r)

r e H.

It follows that, for every r € H and every € > 0,

: T gz Imh(z + e
(16) h(r + i€) = / de Imh(z + ie)

oo T rT—r

For z € R and e < Im(25)}/2], the imaginary part of A(z+te) — ¢(z + i€) is smaller than
—Im(zy)/2, which implies that, h(z + i€) has positive imaginary part. Consequently,
we have from (16) that Imh(r + 2€) > 0 for all r € H, and then, as 0 < e < Im(z)/A is
arbitrary, h{r) = (Ar— ¢{(r))™! € H. Thus ¢(r) — Ar € H for all r € H, which is absurd.
O

It is time to show the uniqueness of the solution to (11). Suppose M,(z) is a solution
to (11). Tf we define

NEM+—9-Z,
o

then re-expressing (11) yields

3 ar _ 8N ¢
a—tN—G.’Nﬁz———-Z

o

(17)
No(z)= ftald) 4 8,

Consider the following differential equation:

(18) 4 = —aNy(z),

with some given starting value zp € H. Then there exists a unique solution, defined up
to the time when z; first exits H. Notice that Im(z¢) is decreasing. Differentiating with

respect to ¢, we get that

- - . ON

Zr = —CI{Nt(Zt) _ aztg
= —-OCZN@ + 62 + azNg
Oz Jz

= 922-5,

implying that
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zy = Acosh8t + Bsinhft
= zg cosh 6t — %Ng(zo) sinh 0t

= zge ¥t — %Mg(z()) sinh 8t.

By Lemma 2, given any ¢ > 0, and any w € H, there is a unique choice of z; =
zo(t,w), 2y = w. Thus

(19) Ni(w) = —l:&t = ugzu(t, w) sinh 8¢ + No(zo(%,w)) cosh 8¢,
(¢4

proving the uniqueness of the solution N to (17), hence the uniqueness of the solution

M. The first part of Theorem 1 is now proved.

5. Convergence of the limit process to the Wigner law.

We have proved that (u})e>0 = (#¢)e>0 where (j1¢)s>0 is characterised as the unique
solution to (10). We shall prove in this section that, when ¢ — co,

He = Hw,

where pw is the Wigner law with density

[ 1

0 (2« 2 7
ra\8 ° (Iz1<\/2270)"

By Lemma 2, for every z € H and ¢ > 0, there exists a unique 2y = 2(%, 2) such
that

(20) z=e Oty — %Mo(zo)sinhet.
Recall

N:M—I—gz.
@

Developing (19) yields

Niz) = —ﬁzg (t,z)sinh 8¢ + No(zo(t, z)) cosh 8¢
a
(21) = 2zg(t, z)e % 4+ Mo(zo(t, 2)) cosh 8¢
a
= g(z + %Mo(zo (t,2)) sinh 6t) + Mo(20(t, 2)) cosh 61,
a

13



from which immediately

My(z) = ¢ Mo(zo(t, 2)).

Fixing z, let e % 24(t,2) = a(t) + ib(¢). Then from (20), 5(t) > Im(z) > 0, for every
t > 0. Moreover,

fm) > W)~ 5o gy = U0~ g

implying that

b(t) < Im(2) + v/ a/8.
Thus

0 < Im(2) < b(t) < Im(z) + v/ a/b.

We also claim that

sup | a(t) |< +oo.
>0

Indeed, if there existed ?,, T oo such that a(¢,) — oo , then by dominated convergence,

we would have

po{dv)

V— 2y

- 0.

sinh(6t,,) / |

Therefore

Re(z) = a(t,) — %—Re (sinh(ﬂtn) / M) — 00,

UV —Zy
which would be absurd. So, for some sequence ¢, — oo, we have a(t,) — a,b(tn) —

b > 0. By dominated convergence, writing w == a + b, we obtain that

FEYT o

The unique solution to this quadratic which lies in H is given by

/.2 _ 2a
ZH+ /% 5

o) = =

o 1
2 6

2a

— 2 _
z k4 7

The uniqueness of (a,b) shows the convergence of a(t) and b(¢) (not only up to sub-
sequences, now). Again because b(t) = Im{e™%24(t,2)) > Im(z) > 0, by dominated

convergence, we have that, when ¢ — oo,
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Finally, to deduce that p; = pw, consider {y:}¢>0 as a family of measures on the
compact space [—oo, +o0]. If v is any limit probability measure on [—oc0, +00], then it

follows from what we have just proved that

/ prwr(dv) _ f pw(dv) _ f v(dv) _ ] v(dv)
ool V% Jlcobool U TF Jioorked] VT F Sjmoopbod VT

for every z € H, which, by property (8), implies that pw = v. The proof of Theorem 1

is completed.

Example. Let us analyse completely the only sifuation where one can calculate any-

thing in a usable closed form: the case of a Cauchy initial distribution. In this case,

-1
z+w’
where w = a +1b € H is fixed, and the integral curve of the vector field (18) started at
z € H is (see (21)) -

M[)(Z) -

_ _ -6t  osinhét 1
(22) Fi(z)=F(t,z) = ze™"" + 7 oo
which we may invert explicitly: for { € H,
2 1/2
FYO) = % [Ce” —w+ {(w + Cef)? — -‘93(629It — 1)} :| .

Recalling that

F(t,z) = —aN(F(t,2)),

we see from (22) that

0z _,, coshft 6 eft
Nt(F(t,Z))—EG —_ z+w _EF(t’z)~z+w’
implying that for { € H,
0 2eft

NdC) = ¢~ F T T o T [(Ce T w) —2ab (% — )i

9 Ceet 4w — [(Ceﬂt + w)2 . 209—1(62% . 1)]1/2

- ZC 2a8-1sinh 8¢
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Our principal interest 1s in the behaviour of the imaginary part of this on the real axis.

Writing e for e~%, we have for z € R,

Im Ny(z) = Im M(z)

8 [(2 +we)® —2a077(1 e'/? — we
o 1—¢2

= Trn

The asymptotics of this can be computed:

Im My(z) = efa | z | (22 — 20671)7/2 — 1]Imw + o(e) (z® > 20071)
= 0o (20071 — 22)/? — efa 2 Rew + of€) (2% < 22071).

Another interesting feature of this is that for ¢ > 0 fixed, the asymptotics in z are given
by
Im My(z) ~ Im(we™%)/22, (| z |— o0),

so that for any ¢ > 0 , y; has no momenis, even though the limit law pw is compactly
supported!

The very explicit form of the solution to the evolution equation (18) allows us

to make precise statements about the large ¢ asymptotics. If

Fy(2) = F(t,2) = ze™ %" — a7 sinh 0t Mo (z)

is the flow map of the solution, then we see that

No(Fi(z)) = -Elv—ﬁ‘(t, z) = gF(t,z) + Mo(2)e’;

so if we can get the asymptotics of the inverse to the flow map, we can find the

asymptotics of Ny(-) and therefore of My(-). Let us now assume

(23) / | z | po(da) < o0, ‘/:cng(d:c) =c
Setting e = ¢ %, let us define
((e,2) = F(t,e%2)

and observe that, because of assumption (23), ¢ is C*? in a neighbourhood of (0, 2) for

any zg € H. Considering the map
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(e,2) 2 (&, C(e,2)) = e, 2),
this map is C*, with differential at (0, z9) equal to
(s 1-0)
6.7 17 3033
So by the inverse function theorem, the derivative of the inverse map at (0,() is

1- 2 0
[1—a/2ezg]—1( R 1)

2 Gzoz

where (o = ((0,20) = z0 + «/202y. Thus

- . ___ac
o) = 020) + (L —ggp ) e ofo)
Therefore
g dz
Ne(Co) = —Co +/ ““cfce ) + o(e€)
@ 0 — 28z3-—a —&r
g 1 28c
M—C0+z_+62ﬂz§ +0(6)
20c
= Neolo) + e + ),
where

Neo(¢) = 6a7(¢? — 2a/6)'/.
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