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1 Introduction

After credit risk, liquidity risk is probably the next most important risk faced by the finance
industry; and yet the study of liquidity is far less advanced. This may be in part due to the
fact that there is no agreed definition of what liquidity is, even in qualitative terms; everyone
would agree that the effect of illiquidity is to make it difficult or costly to trade large volumes
of the underlying asset in small times, but there are different approaches to modelling this.

One modelling philosophy is that trading large amounts moves the price, and the papers of
[7], [8], [16], [15], [17] are examples of this viewpoint, where the stock price responds instanta-
neously to the amount of the stock held by a single large trader. Though such models have a
flavour of liquidity, we regard them rather as models of feedback effects. There is evidence that
the actions of a large trader can influence the price of the underlying (see, for example, [12] and
[11] ). A large trader can try to ‘corner the market’. One way to do this in a commodity market
is to take a huge long futures position and at the same time buy up the underlying commodity.
As expiry approaches the investors who are short the futures contract may find that there is
not enough supply to meet their demand and hence the price is pushed up. One such alleged
case of this was the activities of the Hunt brothers in the silver market in 1979-1980. Their
trading caused the price to increase from $9 per ounce to $50 per ounce. Another way to
‘corner the market’, this time involving shares, is to buy up a large supply and then lend some
to investors who want to go short. When these shares are sold on the market the agent buys
them up and then calls in the short shares. Since the agent has limited the supply of shares by
buying a large amount this pushes the price up. These types of manipulation involve taking
huge positions in the underlying and documented examples of this type of activity have shown
large price increases followed by a crash.

Though interesting in their own right, such feedback models have drawbacks which make
them unsuitable as models of liquidity. One of these is the ‘free round trip’ phenomenon,
discussed in [17]; if the large agent rapidly sells and then buys back a large amount of stock, he
can force the price instantaneously to drop, and if this round trip is not costly (as is the case
in some studies), then the large agent could make profits by selling down-and-out calls, and
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subsequently knocking them out by a round trip. Another problem with such feedback models
is that they typically present the solution to a hedging problem in feedback form, exhibiting
the hedge as a function of time, and current stock price - but if the initial portfolio is not at
the exactly correct value, it is not clear how it is to be moved to that value. A more serious
problem with such models is that if the actions of one agent may affect the price, then logically
the actions of all agents may affect the price, and the resulting analysis of the inter-related
behaviour of the many agents in the market becomes impossibly cumbersome; see, for example,
[9] for a partial analysis of such a setup.

Our viewpoint here is to start from a simple discrete-time microeconomic story, and try to
derive the dynamics of an agent’s wealth process from that. Dividing the time axis into equal
intervals of length ∆t, we suppose that the number of shares offered for sale or purchase in that
interval is of the order of ∆t. An agent who wishes to buy a large number of shares in any one
time interval will have to pay an inflated price, because he is trading in a shallow market. On
the other hand, the amount he actually trades, itself of order ∆t, is small relative to the total
number of shares in the firm, so will have negligible impact on the price of the shares in the
next period. What transpires is that the impact of liquidity modelled in this fashion is like a
transaction cost, but not one which is proportional to the amounts traded. In the conventional
proportional transaction cost model (see [14], [5]), the bid-offer spread (the difference between
the lowest offer price and highest bid price) is proportional to the current asset price, but the
depth of the limit order book is not taken into account. Our approach is to model illiquidity
as a transaction cost taking into account the depth of the book and the trade size; [4] and [18]
explore further aspects of the model introduced here.

The approach of [13] is closest in spirit to ours; the assumption there is that the holding
of stock must be a finite-variation process with bounded derivative, which may be thought of
as a special limiting case of the model we propose. Other models which feature transaction
costs include [2] and [3]. However, in both their models transaction costs can be completely
avoided by following a continuous trading strategy of bounded variation. This seems rather
unrealistic. The paper of Bakstein & Howison [1] shares a number of features with ours; one
main difference is that it leads to feedback effects, which we are trying to eliminate.

The layout of the remainder of the paper is as follows. In Section 2, we present the discrete-
time model underlying our analysis, deriving a continuous-time model by formally passing to
the limit as the time step decreases to zero. In Section 3, we consider how a European put
option would be priced by CARA-utility-indifference; we find that the utility-indifference price
satisfies a PDE which cannot be solved in closed form. Accordingly, in Section 4, we seek an
asymptotic for the price and the hedging strategy that should be used, presenting in Section 5
some numerical results to assess the accuracy of the asymptotic.

2 Modelling liquidity.

We shall consider a single asset, whose price at time t is denoted by St; for simplicity of
exposition, we shall assume a zero interest rate for the time being. Fixing now some ∆t > 0,
we let pn denote log S(n∆t), which we suppose evolves as a random walk,

(2.1) pn = pn−1 + ξn,
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where the ξn are independent and identically distributed. We imagine that in each period λa∆t
shareholders consider whether to sell their shares, and λb∆t agents consider whether to buy
shares. A hedger also comes to the market with the intention of buying ∆Hn shares during the

nth period ((n− 1)∆t, n∆t] ≡ (tn−1, tn]. The log-price p̃n at which he will trade is determined
by the equalisation of supply and demand:

(2.2) λa∆t fs(p̃n − pn) = λb∆t fd(p̃n − pn) + ∆Hn,

where the supply function fs is continuous and strictly increasing, the demand function fd is
continuous and strictly decreasing. We therefore find that the log-price at which the hedger
trades is determined by

(2.3) p̃n − pn = ψ

(

∆Hn

∆t

)

,

where ψ is the inverse function to x 7→ (λafs(x) − λbfd(x)). It is natural to suppose that
ψ(0) = 0.

If we now let Ht denote the number of shares held by the hedger at time t, and Kt denote
the amount of cash held by the hedger at time t, then the wealth1 of the hedger at time t is

wt = HtSt +Kt. The change in wealth over the nth period is therefore

wtn − wtn−1
= Htn−1

(Stn − Stn−1
) + Stn∆Hn − ep̃n∆Hn

= Htn−1
(Stn − Stn−1

) − Stnhn(exp(ψ(hn)) − 1)∆t,

where we use the notation hn = ∆Hn/∆t. If we let ∆t ↓ 0, and suppose that H is differentiable,
with derivative ht = dHt/dt, then we derive the (continuous-time) dynamics for wealth in the
form

dHt = htdt,(2.4)

dwt = HtdSt − htStf(ht)dt,(2.5)

where f(x) ≡ exp(ψ(x)) − 1 is continuous and increasing, equal to 0 at 0.
We shall therefore now concentrate on the continuous-time dynamics (2.4-2.5), and let the

discrete-time construction by which we arrived at it slip into the background. Various forms for
f can be considered; since we intend to treat the illiquidity costs as small, we shall introduce
the small parameter ε into the argument of f , leading to wealth dynamics

(2.6) dwt = HtdSt − htf(εht)Stdt.

It is natural to assume that f is continuous, increasing, bounded below by -1, and vanishes at
0.

In what follows, we shall suppose that S is a standard log-Browian motion, dSt = St(σdWt+
µdt), and that the riskless rate r is a constant. The dynamics of the hedger’s wealth then satisfy

(2.7) dwt = rwtdt+HtSt(σdWt + (µ− r)dt) − htf(εht)Stdt,

which we see reduces to the usual equation when there is no liquidity cost (that is, f ≡ 0).

1We are talking here of the paper or nominal wealth at time t, which is not the same as the liquidation value

of the hedger’s portfolio.
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3 Utility-indifference pricing and the HJB equation

The model presented in Section 2 is incomplete, and so perfect replication is impossible. This
means of course that there is no unique replication price as in the classical Black-Scholes
paradigm, and we have to consider what is meant by a price. Alternative notions for price
in incomplete markets have been advanced; the notion of super-replication, for example, is
sometimes used, but turns out to be far too conservative. What we shall do here is to take
the utility-indifference price, as introduced by Hodges & Neuberger [10], and studied by Davis,
Panas & Zariphopoulou [6].

Informally, the utility-indifference (buy) price Π0(η) at time 0 of some bounded FT -measurable
contingent claim η is obtained by evaluating2

(3.1) sup
{

EU(X + η − p) : X ∈ XT

}

for p a constant parameter, and then varying p until the supremum matches sup{EU(X) : X ∈
XT}, where XT is the set of all wealths attainable at time T . In the standard Black-Scholes set-
up, XT depends only on w0, the initial wealth, but with liquidity costs it will actually depend
also on H0, the initial holding of the stock. With liquidity costs, there is also an issue about
what to do at time T ; we shall assume that at time T the hedger may convert his holding of
stock immediately into cash at no cost. Some convention must be made about time T , and this
seems as good as any other; ignoring liquidity at time T may introduce some error, but it is of
smaller order than the loss due to liquidity effects of hedging.

Writing Yt = wt −HtSt for the cash held at time t, we shall now address the optimisation
problem (3.1) by setting

(3.2) V (t, H, Y, S, p) ≡ supE
[

U(wT + η − p)
∣

∣ Ht = H,St = S, Yt = Y
]

,

and finding the equation to be satisfied by V . We shall simplify by assuming that the utility
is CARA (U(x) = − exp(−γx)), and that η = q(T, ST ) is a bounded contingent claim which
depends only on the final value of the stock (such as a long or short put.) We shall let q(t, St)
be the Black-Scholes price at time t of the claim η; as is well known, q satisfies the PDE

(3.3)
1

2
σ2S2qSS + rSqS + qt − rq = 0.

The CARA assumption allows us to factor out the terms in wealth from (3.2), leaving

V (t, H, Y, S, p) = exp{−γ(Y erτ − p)} supE
[

U(wT + η)
∣

∣Ht = H,St = S, Yt = 0
]

≡ exp{−γ(Y erτ − p)}F ∗(t, H, S).(3.4)

Here, we have used the abbreviation τ = T − t.
Now the dynamics of the various processes are

dS = S(σdW + µdt),

dH = hdt,

dY = dw − d(HS)

= dw −HdS − SdH

= rY dt− hSf(εh)dt− hSdt,

2We are here thinking of the payment p being received at time T ; if the payment were to be received at time
0, the we should replace p by perT in (3.1).
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so the HJB equation to be satisfied by V is

0 = sup
h

{

Vt + hVH + (rY − hS(1 + f(εH)))VY +
1

2
σ2S2VSS + µSVS

}

= exp(−γerτY ) sup
h

{

F ∗
t + hF ∗

H + γerτF ∗Sh(1 + f(εh)) +
1

2
σ2S2F ∗

SS + µSF ∗
S

}

,(3.5)

taking p = 0 with no loss of generality. We intend to express F ∗ as some perturbation away
from the case ε = 0, so we have to know what its form would be for the (Black-Scholes) case
ε = 0. But in this case, the holding Ht of the stock can be freely changed to (or from) HtSt in
cash, and contingent claim η delivered at T is freely exchangeable for the Black-Scholes price
q(t, St) at time t. Thus (writing F 0 for the case ε = 0)

F 0(t, H, S) = supE
[

U(wT + η)
∣

∣ Ht = H,St = S, Yt = 0
]

= exp{−γerτ (HS + q(t, S))} supE
[

U(wT )
∣

∣ wt = 0, St = S
]

= − exp
{

−γerτ (HS + q(t, S)) − (µ− r)2τ

2σ2

}

,(3.6)

as may be checked by straightforward calculations. The optimal wealth to invest in the stock
is

(3.7)
µ− r

γσ2erτ
− SqS.

Thus we write the solution for general ε as

(3.8) F ∗(t, H, S) = − exp{−γerτ (HS + q(t, S)) − (µ− r)2τ

2σ2
+ γϕ(t, H, S)

}

,

where ϕ is going to be small in some sense, and non-negative, in view of the obvious inequality
F ∗ ≤ F 0. Assuming that3 the function h 7→ ψ(h) ≡ hf(h) is strictly convex, with conjugate
function

(3.9) ψ̃(λ) = inf
t
{ψ(t) + λt},

a few lines of calculation reduce the HJB equation (3.5) to

0 =
1

2
σ2S2F ∗

SS + µSF ∗
S + F ∗

t +
γerτSF ∗

ε
ψ̃

(

F ∗
H + γSerτF ∗

γSerτF ∗

)

(3.10)

=
1

2
σ2S2F ∗

SS + µSF ∗
S + F ∗

t +
γerτSF ∗

ε
ψ̃

(

ϕH

Serτ

)

,(3.11)

with the additional information that the optimal choice of h satisfies

(3.12) ψ′(εh) = −F
∗
H + γSerτF ∗

γSerτF ∗
= − ϕH

Serτ
.

3We also assume that f is continuous, strictly increasing, and vanishing at zero, so that ψ ≥ 0, ψ̃ ≤ 0.
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After some lengthy but straightforward calculations, using (3.3), we arrive at the relation

1
2
σ2S2F ∗

SS + µSF ∗
S + F ∗

t

γF ∗
=

1

2
σ2γ

(

SerτH̃ − µ− r

γσ2
− SϕS

)2

+ {1

2
σ2S2ϕSS + rSϕS + ϕt},

where we write H̃ ≡ H + qS. Returning this to the HJB equation, we get that ϕ must satisfy

(3.13)
1

2
σ2S2ϕSS + rSϕS + ϕt +

1

2
σ2γ

(

SerτH̃ − µ− r

γσ2
− SϕS

)2

+
erτS

ε
ψ̃

(

ϕH

Serτ

)

= 0.

In the absence of liquidity, we saw that the optimal wealth to invest in the stock was −SqS +
(µ− r)e−rτ/γσ2, so if we set

(3.14) H0 ≡ H0(t, S) = −qS(t, S) +
µ− r

γσ2erτS
,

the PDE for ϕ becomes

(3.15)
1

2
σ2S2ϕSS + rSϕS + ϕt +

1

2
σ2γS2e2rτ (H −H0 − e−rτϕS)2 +

erτS

ε
ψ̃

(

ϕH

Serτ

)

= 0.

4 Asymptotic analysis

Our aim in this section is to study the approximate form of the solution to the problem when
ε is small. We shall for simplicity assume that

f(x) = x/2,

so that ψ(x) = −ψ̃(x) = x2/2. Although this is not consistent with our previous assumptions
on f , we shall see that it is only the behaviour of ψ̃ near zero that really matters, so the
approximation may be expected to be reasonable.

We shall also assume that µ = r; this assumption means that the target hedge ratio H 0

depends only on the derivative, and not on the rate of growth µ, which is notoriously difficult
to estimate. Moreover, in the context of hedging the derivative, it would be hard to persuade
a sceptical trader that his portfolio should not be zero even if he had no derivative to hedge.

Again for simplicity, we shall assume that r = 0; this entails no real loss of generality,
because we could work instead with discounted stock prices, and discounted wealth, which
would only change γ to γerT .

With these simplifying assumptions, (3.15) becomes

(4.1)
1

2
σ2S2ϕSS + ϕt +

1

2
σ2γS2(H −H0 − ϕS)2 − ϕ2

H

2εS
= 0,

where H0 = −qS , and q solves the Black-Scholes PDE with r = 0:

(4.2)
1

2
σ2S2qSS + qt = 0.

Now for ε small, we expect that ϕ will be small, and we also expect that the value will change
little with H, since any initial position can quickly and cheaply be turned into another quite
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different position. Looking at (4.1), the third term is quadratic in H, so is of much larger
order than the first two; the only way the expression on the left can be zero is therefore if the
final term −ϕ2

H/2εS counterbalances the third term. This leads us to guess that we must have
approximately

ϕH ' δ
√
γ σS3/2(H −H0),

where δ ≡ √
ε. From (3.12), we conclude that we ought to have

(4.3) h ' h0 ≡ −σ
√

γS

ε
(H −H0).

Notice the clear intuitive content of the rule implied by (4.3): in the absence of liquidity costs,
we would be holding the Black-Scholes hedge H0, and when we are compelled to follow a
finite-variation strategy, we simply mean-revert to the Black-Scholes hedge, with a strength
proportional to

√

S/ε. This is the kind of rule that one might guess without the benefit of
a model of liquidity (or even a definition!) but such an intuition would not help much, as it
would give no guidance on how the strength of mean-reversion should be chosen.

What we intend to do now is to find the equation satisfied by the value when the policy
h0 is applied, and then to study how close it is to the value we would get if there were no
liquidity costs. From the reasoning that led to (3.5), we find that the value for using policy h0

is exp{−γY }F (t, H, S), where F solves

(4.4) LF ≡ Ft + h0(FH + γSF ) +
1

2
γεh2

0FS +
1

2
σ2S2FSS = 0.

Recalling (3.6), that when there are no liquidity costs F = F 0, where

F 0(t, H, S) = − exp(−γ(HS + q(t, S)),

we shall write F = F 0 − g, where g will be non-negative, and small. A few calculations turn
(4.4) into

(4.5) (−F 0)γ2σ2S2(H −H0)2 + gt + h0(gH + γSg) +
1

2
γεh2

0Sg +
1

2
σ2S2gSS = 0.

Substituting the form (4.3) of h0 gives us more explicitly

(4.6) gt−σ
√

γS

ε
(H−H0)(gH+γSg)+

1

2
γ2σ2S2(H−H0)2g+

1

2
σ2S2gSS = F 0γ2σ2S2(H−H0)2.

In a more compact notation, this is

(4.7) Gg − 1√
ε
Ag = γ2σ2S2(H −H0)2F 0,

where

G ≡ 1

2
σ2S2 ∂

2

∂S2
+

∂

∂t
+

1

2
γ2σ2S2(H −H0)2,

A ≡ σ
√

γS(H −H0)

(

∂

∂H
+ γS

)
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We plan now to perform a formal expansion of g as

g ≡
∑

m≥1

εm/2g(m),

and see where this takes us. Substituting into (4.7) and comparing terms in the different powers
of

√
ε gives

−Ag(1) = γ2σ2S2(H −H0)2F 0,(4.8)

Gg(m) = Ag(m+1) (m ≥ 1).(4.9)

We can therefore build the functions g(m) recursively, by solving a (first-order, linear, ordinary)
differential equation at each step. To see how this works, we start with (4.8) which is

(4.10) −σ
√

γS(H −H0)(g
(1)
H + γSg(1)) = F 0γ2σ2S2(H −H0)2,

which is solved by

(4.11) g(1)(t, H, S) = e−γHS
{

f (1)(t, S) +
1

2
(H −H0)2(γS)3/2σe−γq(t,S)

}

.

Here, f (1) is some function of (t, S) that is to be determined. Quite how it is to be determined
becomes clear when we look at (4.9) for m = 1; more fully, this equation is

(4.12) Gg(1) = σ
√

γS(H −H0)(g
(2)
H + γSg(2)).

Now it is clear that the right-hand side vanishes when H = H0, and evaluating the left-hand
side at H = H0 gives the second-order linear PDE

(4.13)
1

2
σ2S2f

(1)
SS + γσ2S2qSf

(1)
S + f

(1)
t +

1

2
γ2σ2S2q2

Sf
(1) + 2γ3/2e−γqq2

t /(σ
√
S) = 0

for f (1). Under suitable regularity conditions on the contingent claim, together with the bound-
ary condition f (1)(T, ·, ·) = 0, the PDE (4.13) has a solution given by its Feynman-Kac rep-
resentation, and moreover this solution is non-negative. We now suppose that this is the f (1)

to be used in the definition of g(0). Thus the left-hand side of (4.12) is completely known,
and solving (4.12) for g(2) is the same problem mathematically as solving (4.10). Once again,
there is an undetermined function f (2)(t, S), which is fixed when we take (4.9) for m = 2. We
may in principle continue in this way indefinitely, though there is of course no hope of explicit
solutions.

There is a further issue with the formal expansion constructed in this way; the function g
does not vanish at t = T . Indeed, from (4.11) we see that

g(1)(T,H, S) =
1

2
e−γHS(H −H0)2(γS)3/2σe−γq(T,S).

However, it is clear that this is non-negative, so the perturbation g that we calculate corresponds
to the problem of optimally hedging if at time T we face this final non-negative cost. But what
we were assuming was that at time T we face no cost at all, so the g constructed by the process
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described above should be an upper bound for the loss incurred in the problem as originally
stated. What we learn then is that the loss due to illiquidity should be4 O(

√
ε).

The issue of how we should account for liquidity at the expiry of the option is not clear-cut.
Our assumption is that at that time liquidity costs are suspended, and the position can be
liquidated immediately at no cost. Perhaps better would be to suppose that the agent must
liquidate the holding of stock over a period. But how long will the agent be allowed to spend
in liquidating the position? The first idea would be that he is compelled to borrow the money
to pay the cash value of the option, and then accrues interest on the borrowing as he gradually
liquidates the stock position. His optimal behaviour for this run-off period now constitutes a
further optimisation problem, whose solution determines the boundary condition for the first
optimisation problem, and the model begins to lose whatever charm it may have had in the
first place. We shall not pursue these questions, but make just one observation; the costs of
liquidation at or just after expiry must be O(ε). Indeed, any policy that the agent might follow
for ε = ε0 could just as well be followed for ε = λε0, at exactly λ times the cost.

Our view is that the analysis of this Section suggests an approximation to the cost of
liquidity, and a natural approximation to the optimal hedging rule; in the next Section, we shall
carry out a numerical analysis of an example to compare values from the numerical solution of
the PDE (3.5) with the supposed asymptotics.

5 Numerical Results

The numerical results reported all refer to the pricing of a short European put option. Recalling
that we take µ = r = 0, (3.10) becomes

(5.1)
1

2
S2σ2F ∗

SS + F ∗
t =

(F ∗
H + γSF ∗)2

2εγSF ∗

and (4.3) becomes

(5.2) ht = −
√

Sγσ2

ε
(H −H0(t, S)).

In this section we solve the PDE (5.1) numerically, with the boundary condition F ∗(T,H, S) =
exp(−γ(HS + q(T, S)) and compare the optimal control at time t=0 to (5.2). The equation
(5.1) is a nonlinear PDE in two space variables and time, so it is difficult to solve; we use a
mixed technique to solve it. For the left-hand side of (5.1) we use a Crank-Nicolson scheme,
and for the right-hand side we use an explicit scheme. This has the advantage that at each
timestep we are solving a series of 1-dimensional problems. We use natural boundary conditions
for the S variable. In the H direction, when calculating the first derivative we use a 5-point
central difference scheme when not including the boundary (H=-1 and H=1) and 6 points if
we include the boundary. The S-grid has 101 points, ranging from 30/101 to 30; the H-grid
has 51 points, ranging from -1 to 1. The parameter values we use are σ = 0.2, γ = 0.01, ε =
0.002, T = 4, K = 15. The number of timesteps we use is 80000.

Comparing the optimal control from the numerical procedure with the asymptotic control
at the time 0, Figure 1, we have excellent agreement over a range of H-values.

4We do not claim that necessarily the losses ∼ √
ε; it seems likely that this is the case, but we have no

evidence for this.
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Figure 2: Illiquid Option Price minus Black Scholes Price

Changing two of the parameters, ε = 2 and γ = 0.05 so as to make the price difference a bit
more substantial, we calculated the option price under liquidity costs and compared with the
Black-Scholes price, this time using 160000 timesteps. Figure 2 shows the difference between
the option price in the illiquid market and the Black Scholes price as a function of share price,
evaluated at H = 0. The largest difference seems to be a little below the strike price, K = 15
with the difference tending to zero at the extremes of the share price. This is in accordance with
what intuition would suggest it should be; near to the strike, the amount of hedging required
is going to be greatest, and so the liquidity losses will also be greatest. Deep into (or out of)
the money, the holding of stock will be almost constant, so there will be almost no hedging,
and therefore almost no hedging losses.

The next figure, Figure 3, explores the effect of varying the volatility. It plots the price
difference for two values of σ, σ = 0.1, 0.05, for comparison with Figure 2. All other paramter
values are the same as for Figure 2.

The final figure, Figure 4, shows the option price difference as a function of time, plotted
every 0.25 years out to 5 years, with S = 50 ∗ 30/101, H = 0. Each step of 0.25 years was
computed with 10000 timesteps, other parameters are as for the computation of Figure 2.

11



0 5 10 15 20 25 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

S

P
ric

e 
D

iff
er

en
ce

sigma 5%
sigma  10%

Figure 3: Illiquid Option Price minus Black Scholes Price, σ = 0.1, 0.05.
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6 Conclusions.

Starting from a simple microeconomic story of equalisation of supply and demand, we have
developed a model for the effect of liquidity, which we interpret as a cost to be paid if the
hedger changes portfolio rapidly. In contrast to ‘feedback’ or ‘large agent’ models, the market
price of the underlying is not affected by the actions of the hedger; the hedger’s impatience
to change his portfolio affects mainly himself, as he tries to move large quantities over the
(quite thin) short-term market made up of the relatively few shares that are available in a
short time period, but has little effect on the much larger number of shares in total. Think of
punching a truck. This modelling standpoint now allows us to obtain simple dynamics, with
their associated PDEs, but these are not soluble any way except numerically. Nevertheless, we
present a formal asymptotic expansion whose conclusions are intuitively reasonable, and which
agrees very closely with numerical values.
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