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Abstract

The use of trading stops is a common practice in financial etarfior a variety of reasons:
it reduces the frequency of trading and thereby transaciomts; it provides a simple way to
control losses on a given trade, while also ensuring thditgeking is not deferred indefinitely;
and it allows opportunities to consider reallocating reses to other assets. In this study, we
try to explain why the use of stops may be desirable, by piogoa simple objective to be
optimized. We investigate a number of possible rules forpllaging and use of stops, either
fixed or moving, with fixed costs, showing how to identify opél levels at which to set stops,
and compare the performance of different rules.

1 Introduction.

When a trader enters a position in a risky asset, it is commaettstops at which he will come out
of the position; for example, he may decide to come out of the&tjpn when the value has either
risen by 0.1 or fallen by 0.03. Such a fixed-stop trading ralthe simplest to describe, but there
are other possibilities, where perhaps the lower stop esdhle value of the position rises, thereby
locking in any gain, while allowing the position to contintgerise in value. In this paper, we shall
study some simple explicit instances of trading to stops, tanto answer two questions: Is it a
good idea to trade to stops in some way? Given that we intetrdde to stops in some way, how
would we go about placing them?

To answer the second of these questions, we shall proposepéesbbjective which must be
maximized over the parameters defining the stopping rule.artswer to the first question is more
subtle. If we (just for now) restrict the discussion to ruldsch trade to fixed stops, what we find is
that in most instances the best thing to do is to put the lovegrat—oo, which is counter-intuitive.
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It is counter-intuitive, because one of the reasons to ugEs$$ to prevent the trade running up huge
losses, and yet it seems from the theory that this is exadibt we should be doing. However, the
theoretical predictions are based on very precise assangxdibout the dynamics of the risky asset;
if we relax these strong assumptions, we find a differentupgcemerging. Specifically, we shall
assume that the value of the position evolves as a Brownidiomwith constant drift and constant
volatility; the volatility will always be assumed to be knoybut we will relax the assumption that
the drift is known with certainty to the more realistic asqiion that we have some (finite atomic)
prior over the possible values of the drift. Given this, welfinat there is good reason to place stops,
either fixed or moving, as a means to protect against modertainty, and we compare various
different ways of placing the stops.

2 Model set-up.

We shall suppose that a trader enters a position at time Oirireg|the commitment of unit capital.
The trading gains of this position at timas X; = oW, + ut, whereW is a standard Brownian
motiorfl. Now this gainis not realized until the position is closedl atisome stopping timeé = T},
when the trader will be able to book a gain equakip, which may be negative. We shall suppose
that when the position is closed, a constant cost equalwdl be paid. Having closed out the
position, we will suppose that the trader repeats the pgyc@ge again investing unit capital in the
position, and using the same stopping rule applied to thasebprocessX (71 + t) — X (71))+>o-
Thus the stopping timéeg, (which are the times at which the position gets closed andadiately
re-opened) form a renewal process. The time-0 value of épisated trading activity will be

p=EY e UX(Th) — X(T,) —¢) (2.1)

n>0

wherep is the (constant) rate of discounting , and the utilityis some smooth concave strictly
increasing function. If we cared only about the net presahiesof all the gains from trade over
time, we would take = r, the riskless rate of interest, abtiz) = z, and take expectations with
respect to the pricing measure. However, this is not the passible case of interest. Indeed, we
shall see that we must allow strict concavity(6fo explain why an agent would wish to place stops;
when it comes to studying this, we shall always take

U(z) =1—exp(—yz) (2.2)

for somey > 0, the coefficient of absolute risk aversion. The (risk-nal)itcase of lineaf/ is
regarded as a limiting case, using the limitag 0 of v~ 1(1 — %)
The following simple result reduces the calculation.db two simpler calculations.

Lt might be considered more natural to use geometric Browniation as the asset model, taking a CRRA utility
to express the agent’s preferences. However, it turns atitritthe case of fixed stops the optimization problem results
in an uninteresting solution; the optimal placing of the epgtop is either at infinity, or at the starting value.
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Proposition 1. The valuep of the trading strategy is

Ele "TU(X7 — ¢)]

T (2.3)

90 =
whereT = T;.

PROOF By the strong Markov property, by decomposing the objed&1) at the firsttimé& = T}
that the position gets closed out we see that

p = EleUXr—o)]+EY e U(X(Thp) — X(Ty) - ©)
= EleU(Xr —c)] + E{e“’TE[Z e PT = DU (X (Tyi0) — X(Ty) — ©)|Fr]}

= EleU(Xr —c)] + Ee .

Rearrangement gives the resfilf{2.3).

0
To set the stage, we now offer a few natural examples which Wetwdy in more detail later.
Example 1: fixed stops.This is the easiest example of all. We take- 0, b > 0 and set
T =inf{t: X;, = —aor X, =b}. (2.4)

Example 2: one rising stop.Fix a > 0 and letX, = supy<.<; Xs. Then we use the stopping time
T =inf{t: X, — X, =a}. (2.5)

This example is dealt with by Glynn & Iglehaft [1].

Example 3: one rising stop, one fixed stopThis time we fixa > 0 andb > 0, and set
T = ll'lf{t . Xt — Xt =a OI‘Xt = b}, (26)

which gives the rising stop of Example 2 but with a take-prstfip ath > 0.

Example 4: converging stopsFix a > 0 ande > 0. Then we use the stopping time
T=inf{t: (1+e)X,— X; = a}. (2.7)

In this situation, it is easy to see that the trade stops doré& first hitsa/«; it has similarities to
Example 3, and in the special case- 0 we recover Example 2.



Since our main interest is in the case of CARA utility (Z2), we see that the value of the
problem can be expressed as

E[e"’T] _ evcE[e—pT—wXT]

L 1= Ele 7]
_ L(p,0) — eL(p,7)
- T 1050) (2.8)
where
L(s,z) = E[e~sT—#%7] (2.9)

is the joint Laplace transform of the time and place of stogpiThus the first objective is to identify
the joint Laplace transformh as explicitly as possible in each of the examples under tigaggon.
As we shall see, this is not the end of the story, merely thé sta

3 Analysis of the examples.

In this Section, we shall analyse the examples presenteetiio®2 and derive explicit solutions for
the joint Laplace transformh in each case. The first example is solved using differentjahgons
techniques, which we can think of as an application of Iti@as. Similar techniques may also
be used to solve the other examples, but as the state vaisabtelonger one-dimensional, the
construction of the correct functions is not as simple ongparent. For this reason, we prefer to
derive the answers using Itd excursion theory, introdunetto in [2]; see [ 8] or 4] for accessible
accounts.

3.1 Example 1: fixed stops.
We write » i
— 1 2_ -
L=1lo T2 +'udx p (3.1)

for the generator of the diffusioX with killing rate p. If f : R — R is C? and satisfie€ f = 0,
then by an application of Itd’s formula we have that

M, = e "' f(X;) is a local martingale

which is bounded on the intervé), 71, and therefo&(M(t A T))e>o is a martingale. By the
Optional Sampling Theorem, it followshat

f(0) = E°[e™ f(Xr)] (3.2)

2Here, of courseT is given by [ZH).
3The notation£” denotes expectation under the initial conditip = «.
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so in order to compute the numerator and denominatérih i3s®nough to solve the ODEf = 0
in [—a, b] with the appropriate boundary conditions.
If we let —a < 0 < (3 be the roots of the quadratic

1022 +puz—p =0, (3.3)
then the solution to the ODE

(AePb — Be=P)e=o% 4 (Be® — Ae=)ef®
f(x) = eaa—i—ﬁb _ e—ab—ﬁa :

Evaluating atz = 0 simplifies to

APl — e7) 4 B(e*® — e7F)

f(O) - exa+pBb _ p—ab—pfa (34)

If we now takeA = exp(ya) andB = exp(—~b) we read off the joint Laplace transforim for this
first example:
e*ya(e,é’b o e—ab) + e—fyb(eaa o e—,Ba)

Ll (pa 7) = eaa—i—ﬁb _ e—ab—ﬁa (35)

Substituting the form of.; into the expressiori{2d.8) gives the valpdor this stopping rule. The
dependence of the right-hand sideois of course through the dependence.pff on p as solutions
to (3.3). The mean of the hitting time can be derived from thplace transform as

BT = -S40,
b(eFe — 1) — a(1 — e kb
- ( M(eiza _ e(—kb) ) (3.6)

after some calculations, wheke= 21/02.

3.2 Example 3: one rising stop, one fixed stop.

We deal with this example first, and read off the solution taiiple 2 as the special cabe- .
Recall that we take the stopping time

T =inf{t: X, — X, =aor X, =b}, (3.7)

whereX,; = sup,.,, X,. The proces§” = X — X is a continuous strong Markov process with
values inX = (—o0, 0], and 0 is a recurrent point for this process. The Itd thedrgxaursions
[2] applies to this process, and we will make use of it. Uetlenote the space of all excursions
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of Y away from 0, that is, continuous functiorfs: R* — X with the property that for some
¢ = ¢(f) € (0,00], thelifetime of the excursion, the sef~'((—cc,0)) is of the form (0, ¢).
RegardingU as a subset af'(R™, R) induces the subset topology 6h and in factU is a Polish
space; see, for examplé&] [4] for definitions and basic ptsser The process is a continuous
homogeneous additive functional Bf growing only whert” = 0, and acts as the local time at zero
for Y. The open seY ~!((—o0,0)) is the disjoint union of countably many excursion intervals
and the point proceds = {(L;,&’) : j € Z} is a Poisson point process (f, co) x U, where

Lj = X (1),
& =Y.

J

The mean measure of is Leb x n, wheren is theo-finite excursion measuresee 1td [2]. The key
to effective use of 1td excursion theory is an explicit cdwterization of the excursion measure
Once the excursion has escaped from 0, it evolves like tifiestih X — X until it first hits zero,
and it leaves 0 according to an entrance law.

We shall use excursion theory to calculate for &ny 0 the expectation

L(p,0) = B exp(—pT — 0X7) |; (3.8)

evidently, once we have this, we can obtain the numeratorde@mdminator in[{2]3) by suitable
substitutions and combinations. As explained(in [3], wel dégth expectations such aE(B.8) by
introducing an independentp(p) time 7, and writing

Elexp(—pT —0Xr) ] = E[e™ 7 . T < 7]. (3.9)
The way this is handled by excursion theory is to thinkradis being the first event timg in a
Poisson process dR™ of intensity p, with event timesr;, < 7, < .... This Poisson process of

times can be dealt with byparkingthe excursions oY, each independently of all others, according
to a Poisson process of intensjy The excursion point proceds gets modified to the marked
excursion point proced$, where each excursig gets augmented t6 = (¢/, N7), whereN7 is an
increasingZ™-valued path, representing the path of the marking proestsceted to the excursion
¢1. We observe the marked excursion procEssntil eitherlocal time X reache; or we see an
excursion which gets te-a before any markpr we see an excursion which gets marked before it
reacheq0, —a}. To set some notation, let

A = {excursions which are marked before reaching 6-o}; (3.10)
B = {excursions which get te-a with no mark before reachinga }. (3.11)

We shall calculatei(A) andn(B) quite simply, but for this we need to characterize the exouars
measure effectively. Leta < 0 < 3 be the roots of the quadratie?t? + ut — p; then routine
calculations lead to the conclusion that for any < x < 0

E*[1 — empHoN-a] — 1_76_&1(1 — ) + ﬁ(l — P) (3.12)
eoa e—ﬁa eca 6—6a
e o emoT _ e,Bm
Efle Pt H < Hy) = — (3.13)
eca e—ﬁa
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whereH, = inf{t : X; = z} is the hitting time ofz. Since the measure of excursions which reach
—¢ is asymptotic taa—! ase | 0 (see Williams’ decomposition of the Brownian excursion [8y
[1.67), we conclude that

aa —Ba __
n(A) = lim EE‘E[l _ e—pHOAH,a] _ Be* 4 ae (a+ )

3.14
el0 € eea — g—pa ’ ( )
1 a—+f

B) = lim=-F ¢[ePl-.H , < Hy]=—"_. 3.15
n(B) im — e o] = (3.15)

The first excursion il U B comes at local time rate

aa —Ba
v=n(AUB) = ﬂ(ﬁ% (3.16)
eaa _ 6_ a

We shall stop the point process either at the first time we sexeursion inA U B, or when local
time reaches, whichever comes sooner.

Now we come back to the expectati@n {3.9), and consider heveventl’ < r could happen:
this couldeither be becauseX reaches before the first excursion id U B; or because the first
excursion inA U B happens beforé& reachesh, and is in fact an excursion i. By simple
properties of Poisson processes, we discover after athibleght that

Li(p,y) = Elexp(=pT —0Xr)]
Ele 7 . T < 1]

b
_ e_Vb_6b+/ ve vy n(B) e—@(y—a) dy
0

v

We evaluate the objectivé(2.8) by settiig= 0,~ to calculate the numerator and denominator.
After some calculations we obtain

(O{ + ﬁ)(l _ e—ub) + Ve—ub(eaa _ 6—,6’(1)

E[e_pT] = I/(eaa _ e_ﬁa)

, (3.17)

As before, the mean df' can be computed by differentiating the Laplace transfdrfidBwith
respect tq at zero. We findl that

0.2

E[T) = 22

(e" —1 —ka)(1 —e™™) (3.18)

wherek = 211/0% as before, aneh = k/(e** — 1).

4The calculations were carried out by a symbolic mathematickage, and by traditional methods.



The simpler expressions which obtain whies oo reduce to

n(B)e’
v+0

Lo(p, ) = . E[eT] = % E[T) = ;—/ﬂ(eka —1—ka). (3.19)

The second of these agrees with the result of Glynn & Iglefihrequation (3.2), after translation
of notation.

3.3 Example 4: converging stops.
In this example, the stopping time is given by {2.7):
T=inf{t: (1+¢)X; — X, =a}.

The analysis of this example is quite similar to Example 8egx that the excursion measure of the
excursions which stop the process now depends on how muahtiow has elapsed. When local
time X has reached, then any excursion which either contains a mark, or reachess¢ will stop
the Poisson point process. Exactly adaf(3.14),13.15)ntkasity of excursions which are marked
before reaching-a + </ or zero is

B 6ea(a—5€) 4 ae—ﬁ(a—d) - (Oé 4 5)

TLA( ) ecala—el) _ o—B(a—el) ) (320)
and the intensity of excursions which getta + ¢ before getting marked is
_ a+
ng(l) = e e ey (3.21)
So in total, the intensity of excursions which stop the Rmgsoint process is
6€a(a—a€) +a€—,6’(a—e£)
nauB (ﬁ) - ecla—el) _ o—B(a—el) (322)

We can now calculate

F(t) = P(X reaches before the stopping excursipn

¢
= exp{—/nAuB(s) ds}
0
]__e_(a""la)a
_ a1
= exp{ Ot —e log(l_e_(aw)(a_d))}

_ e—ﬁt 1 — e—(a—l—,@)(a—at) 1/e
1 — e (at+Ba ’




which we notice is decreasing withand vanishes when= a/¢ as it must. Using this, we deduce
after some calculations that

a/e _
E[e—HXT—pT] — / e—@((l—l—e)m—a) ng (x)F(x) dx
0
ale
_ ~0((1+e)z—a) atp i
/0 . oy F@) da
1 [ e OtPa Ve f1 !
€ —e€ exp{—(a+B)a}

wherec = (0 + 3)(1 4+ ¢)/e(a + ). The answer is therefore available in terms of incompleta be
functions.

4 Placing of the stops.

The identification of the joint Laplace transform 6éfand X, in each of the previous examples
now allows us to evaluate the objectiye(@.8), and by varying the parametersandb we are
able to optimizep. However, numerical investigation shows that in many c#seoptimal to let

a — oo. If this happens, then there would be no reason to place a lstwp, which is somewhat
unexpected. We can analyse this phenomenon quite comyietéhe case of fixed stops, which we
shall now do. The other examples are more complicated, andawe not pursued the analysis of
this phenomenon in those instances; numerical investigashow similar behaviour. In any case,
since we observe that often for fixed stops the best thing issémo lower stop, we are forced to
re-assess the modelling assumptions.

Accordingly, we will until further notice restrict atteot to the fixed-stops example, Example 1
The joint Laplace transformy; of T'and X+ has been found(3.5), and so we are able to obtain an
explicit expression for the value using [Z8). Since we are concerned with the behaviour ef thi
asa — oo with all other parameters fixed, we shall use the (local) tratap(a), where we have
explicitly

L(p,0) — eL(p,7)
1— L(p, O)
1—eLip,7)
1- L(ﬂ? 0)
e — Bie P — (1 — By)e"9T9) — Byere(e®® — e7H)
e®® — Bie=Pe — (1 — By) — Bz(e*® — e=ha)

pla) =

= —1+

= —1+

(4.1)

whereB; = e (@t B, = ¢~ (490 B, — A 3|l positive constants less than 1. The large-
behaviour of this expression is determined in the followlitite result.



Proposition 2. Consider the behaviour of the objectif&8) in the case of fixed stodE.4) as
a — oo, With b fixed.

@) If v > athen
lim ¢(a) = —oc0 (4.2)

a—00

(@ii) If a > ~andb > cthen
p(a) < ¢(o0) (4.3)
forall a > 0.

PROOF The proof is given in the AppendixIA.

REMARKS. It is easy to understand the content of Proposifion 2. Ircése where > a, it is not
advantageous to let— oo because although the expectation

E[e_pT : Xp=—a] ~e (4.4)

is getting exponentially small, the utility when this eveappens is getting large negative exponen-
tially, andat a greater rate In contrast, ify < «, the exponential decay of the expectatibnl(4.4)
beats the growth of the penalty, and the agent can ignoreathaly for stopping at a low negative
level. The conditiorb > ¢ is needed for the proof, but has a natural interpretatiohxifc, we are
certain to be losing money every time we review our portfadmwe would never consider entering
this trade.

For a reasonable solution, then, it seems that we requirerr. However, in typical examples,
this can lead to coefficientsof absolute risk aversion so high that the valuis always negative, so
we would never engage in this trade! The point is thatsolves the quadrati€(3.3), and.if> 0,
we will always haver > 2u /02, a lower bound which need not be small. So for a solution with
realistic values ofy, and with a rationale for a lower stop at a finite position giésis that we are
forced to consider situations wheras negative. But if the growth rate of the trade was negative,
and we are paying transaction costs, we would certainlymesat to enter into it!

The resolution of these seemingly inconsistent requirésisito suppose thate are not certain
of the true value of:.. If we have some prior distribution over possihlevalues which allows
positive probability thaj: is negative, we will find that even for small valuespthe punishment
for stopping at very low levels really hurts, and we will wamuse a finite lower stop. On the other
hand, if the probability of decently positive values.ois quite high, we will be emboldened to take
part in the trade.

So now we briefly explain how the value is calculated in thaatibn where there is a prior
distribution over., given by the probability measure. We will denote the vahﬁp if the true drift

SWe now remove the restriction that we are discussing Exatplay; what follows applies generally.
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is u by ¢,.. This is calculated as explained in Sectidon 2. Then by camditg on the value of;, it
is clear that the overall valug of the trade when are uncertainofs simply

¢ = / ou m(dp). (4.5)

Ideally, we would tell some story where what we learn ahofrom the outcomes of the successive
trades would be incorporated into our beliefs aboubut as in practice such learning takes place
very slowly, we are safe to ignore it.

5 Numerical study.

We shall compare the stopping rules of Secfibn 3 in just tveorgdes. In all cases, we shall assume
thato = 0.3, v = 2.5, ¢ = 0.0005, andp = 0.1. We have explored various other examples, and the
behaviour which we report in these two appears to be quiiedy,pA further comparison we make
is with a fixed-revision rule, where the investor choo%es 0 fixed, and then revises his position
at multiples ofT’, regardless of the performance of the asset. The objestivrde again given by
(2.3), though now of coursg is constant. We find the agent’s best choice of fi¥ednd compare
the performance of this rule with the various rules deteediby stops.

In the first example, we assume that the agent knows 0.15 with certainty. There are four
stopping rules to be considered now, and the results are givbe following table.

Besta | Bestb | Objective T
Fixed stops 00 0.0184| 4.1553 | 0.1224
Rising lower stop 0.0894 0.5314 | 0.0983
Rising lower, fixed upper stop oo 0.0184| 4.1553 | 0.1224
Fixed exit time 0.8724 | 0.3780

Notice how with fixed stops or with a fixed upper stop and a gdawer stop, the best choice of

is a = oo; it always pays to push the lower stop all the way down. If teidone, then of course
the two stopping rules amount to stoppingaand so it is no surprise that the values, the optimal
choices ob, and the mean time per trade all agree. The valas a function ot: andb is displayed

in Figure[d; for finitea, the pictures for Examples 1 and 3 are in principle differémit in this
example they are not visibly different. Notice that the ealor a fixed upper and rising lower stop
is substantially higher than for a rising lower stop onlystis of course to be expected, as we have
optimized over a larger set, but the magnitude of the impream is noteworthy. The rising lower
stop example, Example 2, is quite different in characteth&imuch shorter mean time in trade.
The fixed revision rule performs very poorly relative to thwdtsided stops rules, Examples 1 and
3.

To illustrate the point made in Sectibh 4 for the reason whynag want to use finite stops, we
take as our second example the situation where we do not seppat. is known, but rather that
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there is a priotV (o, ag) distribution for... We suppose that, = 0.15, with o, = 0.3. The results
obtained are reported in the following table.

Besta | Bestb | Objective T
Fixed stops 0.2159| 0.0470| 0.8416 | 0.0998
Rising lower stop 0.0603 0.2397 | 0.0439
Rising lower, fixed upper stop0.2375| 0.0464| 0.8398 | 0.0984
Fixed exit time 0.5627 | 0.0670

The calculated values are displayed in Figlildd 3, 4&nd 5valoes of all the rules have dropped,

particularly the stops trading rules. As with the certaiovgih rate, the two-stops rules do substan-
tially better than either the lower stop or the fixed time t@s®mn. Mean times in trades have fallen

in all cases. As before, there is no appreciable differeratevden Examples 1 and 3; the rising

lower stop has very little effect.

6 Conclusions.

There are at least three reasons why we might in practice twigtade to stops in some way. The
first is to reduce transaction costs: trading strategieshvtebalance infrequently are always to be
preferred, and in some asset classes, such as EM currertoége wosts might be typically 40bp,
daily rebalancing will quickly eliminate any profitable tncies. The second reason for wishing
to trade to stops in some way is that until a position has b&esed out, no profits can be booked
to it. There is therefore an incentive not to let a positiom indefinitely, but to take profits at some
point. Following from this is a third reason; if our choicestbps rests on current estimates of asset
dynamics, then it is important that we do not sit in the trameglafter the parameter estimates have
wandered away, otherwise the expected performance mayatetiaiize.

In this study, we have investigated several possible raeplacing fixed or moving stops, and
compared their performance. We have found that uncertaieythe growth rate of the asset is an
essential feature of choosing stops; if we know that thetasskifting up, we would never want to
place a lower stop. The possibility that the drift might bgaiive is what makes us want to put in
lower stops. If we use a fixed upper stop, we have found that ikdittle difference between using
a fixed or rising lower stop, but the mean time in the trade iallenusing a rising stop. Thus we
would recommend of the three rules studied here, the besettsia fixed upper stop, with a rising
lower stop.
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A Proof of Proposition 2.

PROOF OFPROPOSITIONZ. The case > « is easy; the dominant term in{#.1) is the teem(@+o)
in the numerator, and this makes it obviBtlsatgo(a) — —00 asa — o0.
The second case is more delicate. The limip6f) is easily seen to be

1 — Bye™*

=4
¢(c0) Ay

If we now considetp(oco) — ¢(a), we find a rational expression whose denominator is poskive
whose numerator is (a positive multiple of)

H = (1— By)z — (Boe™ — By)y — (1 — Bae™), (A1)

where we set = ¢7(¢t9) |y = ¢~ for brevity. Thus it will be sufficient to prove that the expsion
H is non-negative.
Sinceb > ¢, we may writes = b — ¢ > 0, and thend becomes

H = (1—-B3)z+B3(1—e7 )y — (1 — Bse ™)
= (1—33)(2—1)+Bg(1 —6_7€)y—33(1—6_7€)
= (1-Bs)(x—1)— Bs(1—e)(1 —y). (A.2)
It is clear from the final equation that if we now hald> 0 fixed, and consideH as a function of

v, thenH is convex, and vanishes as| 0. To prove non-negativity off, we now investigate the
gradient ofH with respect toy, which is

H
887 = (1— Bs)(a+c)e" @) —cBy(1 —y)e *
= ¢ ¢ [(1 — Bs)(a+ c)e“’(‘”b) —(1—y)Bs(b— c)]

As~ | 0, we obtain the limit

OH
W(0) = (1-DBs)(a+c)—(1—y)Bs(b—c)

= (1—e™(a+c)—ePb—c)(1—e ")
e[ (a+c)e™ + (b—c)e™™ — (a+1) ]

_ g atc g b—c ~Ba_q
()™ g e
> (a+Db)e e’ —1]

> 0,

5The denominator is asymptotic ¢ (1 — B3) which is certainly positive.
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where we have used convexity of the exponential functiotHfefirst inequality. Sincél is convex,
and its derivative at zero is positive, it follows thdtis increasing, and therefore is everywhere non-
negative, since it is zero gt= 0.

U
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Objective using fixed stops, repeated trades, discrete consumption

Sigma

0.3, gamma = 2.5, ¢ = 0.0005, rho = 0.1, mu = 0.15

0.04

0.00

Example with knowp = 0.15.

1

Figure
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Obijective using rising lower stop only, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, ¢ = 0.0005, rho = 0.1, mu = 0.15

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Figure 2: Example with knowp = 0.15, rising lower stop only.
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Value

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.45

Objective using fixed stops, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, ¢ = 0.0005, rho = 0.1, mu ~ N(0.15,0.09)

0.00 0.00

Figure 3: Example withi ~ N(0.15, 02).
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Objective using rising lower stop only, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, ¢ = 0.0005, rho = 0.1, mu ~ N(0.15,0.09)

0.25

0.10+

0.05+

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Figure 4: Example witht ~ N(0.15, 02), rising lower stop only.
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Value

Objective using fixed upper and rising lower stop, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, ¢ = 0.0005, rho = 0.1, mu ~ N(0.15,0.09)

0.0

>
==

SOUS SO SO S o

S S OSSSSUSSSOSSSSO

ST ST

SOSSOS
SOSOTS S SO
S S S OSS SIS SSOS S
S S ST S SIS S
OSSO

0.10

0.00

Figure 5: Example with ~ N(0.15, 02), rising lower stop and fixed upper stop.
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