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Abstract

The use of trading stops is a common practice in financial markets for a variety of reasons:
it reduces the frequency of trading and thereby transactioncosts; it provides a simple way to
control losses on a given trade, while also ensuring that profit-taking is not deferred indefinitely;
and it allows opportunities to consider reallocating resources to other assets. In this study, we
try to explain why the use of stops may be desirable, by proposing a simple objective to be
optimized. We investigate a number of possible rules for theplacing and use of stops, either
fixed or moving, with fixed costs, showing how to identify optimal levels at which to set stops,
and compare the performance of different rules.

1 Introduction.

When a trader enters a position in a risky asset, it is common to set stops at which he will come out
of the position; for example, he may decide to come out of the position when the value has either
risen by 0.1 or fallen by 0.03. Such a fixed-stop trading rule is the simplest to describe, but there
are other possibilities, where perhaps the lower stop risesas the value of the position rises, thereby
locking in any gain, while allowing the position to continueto rise in value. In this paper, we shall
study some simple explicit instances of trading to stops, and try to answer two questions: Is it a
good idea to trade to stops in some way? Given that we intend totrade to stops in some way, how
would we go about placing them?

To answer the second of these questions, we shall propose a simple objective which must be
maximized over the parameters defining the stopping rule. The answer to the first question is more
subtle. If we (just for now) restrict the discussion to ruleswhich trade to fixed stops, what we find is
that in most instances the best thing to do is to put the lower stop at−∞, which is counter-intuitive.
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It is counter-intuitive, because one of the reasons to use stops is to prevent the trade running up huge
losses, and yet it seems from the theory that this is exactly what we should be doing. However, the
theoretical predictions are based on very precise assumptions about the dynamics of the risky asset;
if we relax these strong assumptions, we find a different picture emerging. Specifically, we shall
assume that the value of the position evolves as a Brownian motion with constant drift and constant
volatility; the volatility will always be assumed to be known, but we will relax the assumption that
the drift is known with certainty to the more realistic assumption that we have some (finite atomic)
prior over the possible values of the drift. Given this, we find that there is good reason to place stops,
either fixed or moving, as a means to protect against model uncertainty, and we compare various
different ways of placing the stops.

2 Model set-up.

We shall suppose that a trader enters a position at time 0, requiring the commitment of unit capital.
The trading gains of this position at timet is Xt = σWt + µt, whereW is a standard Brownian
motion1. Now this gain is not realized until the position is closed out, at some stopping timeT = T1,
when the trader will be able to book a gain equal toXT , which may be negative. We shall suppose
that when the position is closed, a constant cost equal toc will be paid. Having closed out the
position, we will suppose that the trader repeats the process, once again investing unit capital in the
position, and using the same stopping rule applied to the rebased process(X(T1 + t) − X(T1))t≥0.
Thus the stopping timesTn (which are the times at which the position gets closed and immediately
re-opened) form a renewal process. The time-0 value of this repeated trading activity will be

ϕ ≡ E
∑

n≥0

e−ρTn+1 U(X(Tn+1) − X(Tn) − c ) (2.1)

whereρ is the (constant) rate of discounting , and the utilityU is some smooth concave strictly
increasing function. If we cared only about the net present value of all the gains from trade over
time, we would takeρ = r, the riskless rate of interest, andU(x) = x, and take expectations with
respect to the pricing measure. However, this is not the onlypossible case of interest. Indeed, we
shall see that we must allow strict concavity ofU to explain why an agent would wish to place stops;
when it comes to studying this, we shall always take

U(x) = 1 − exp(−γx) (2.2)

for someγ > 0, the coefficient of absolute risk aversion. The (risk-neutral) case of linearU is
regarded as a limiting case, using the limit asγ ↓ 0 of γ−1(1 − e−γx)

The following simple result reduces the calculation ofϕ to two simpler calculations.

1It might be considered more natural to use geometric Brownian motion as the asset model, taking a CRRA utility
to express the agent’s preferences. However, it turns out that in the case of fixed stops the optimization problem results
in an uninteresting solution; the optimal placing of the upper stop is either at infinity, or at the starting value.
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Proposition 1. The valueϕ of the trading strategy is

ϕ =
E[e−ρT U(XT − c)]

1 − Ee−ρT
(2.3)

whereT ≡ T1.

PROOF. By the strong Markov property, by decomposing the objective (2.1) at the first timeT = T1

that the position gets closed out we see that

ϕ = E[e−ρT U(XT − c)] + E
∑

n≥1

e−ρTn+1U(X(Tn+1) − X(Tn) − c)

= E[e−ρT U(XT − c)] + E
{

e−ρT E[
∑

n≥1

e−ρ(Tn+1−T )U(X(Tn+1) − X(Tn) − c)|FT ]
}

= E[e−ρT U(XT − c)] + Ee−ρT ϕ.

Rearrangement gives the result (2.3).
�

To set the stage, we now offer a few natural examples which we will study in more detail later.

Example 1: fixed stops.This is the easiest example of all. We takea > 0, b > 0 and set

T ≡ inf{t : Xt = −a or Xt = b}. (2.4)

Example 2: one rising stop.Fix a > 0 and letX̄t ≡ sup0≤s≤t Xs. Then we use the stopping time

T ≡ inf{t : X̄t − Xt = a}. (2.5)

This example is dealt with by Glynn & Iglehart [1].

Example 3: one rising stop, one fixed stop.This time we fixa > 0 andb > 0, and set

T ≡ inf{t : X̄t − Xt = a or Xt = b}, (2.6)

which gives the rising stop of Example 2 but with a take-profitstop atb > 0.

Example 4: converging stops.Fix a > 0 andε > 0. Then we use the stopping time

T ≡ inf{t : (1 + ε)X̄t − Xt = a}. (2.7)

In this situation, it is easy to see that the trade stops out beforeX first hitsa/ε; it has similarities to
Example 3, and in the special caseε = 0 we recover Example 2.

3



Since our main interest is in the case of CARA utilityU (2.2), we see that the value of the
problem can be expressed as

ϕ =
E[e−ρT ] − eγcE[e−ρT−γXT ]

1 − E[e−ρT ]

=
L(ρ, 0) − eγcL(ρ, γ)

1 − L(ρ, 0)
(2.8)

where
L(s, z) ≡ E[e−sT−zXT ] (2.9)

is the joint Laplace transform of the time and place of stopping. Thus the first objective is to identify
the joint Laplace transformL as explicitly as possible in each of the examples under investigation.
As we shall see, this is not the end of the story, merely the start.

3 Analysis of the examples.

In this Section, we shall analyse the examples presented in Section 2 and derive explicit solutions for
the joint Laplace transformL in each case. The first example is solved using differential equations
techniques, which we can think of as an application of Itô calculus. Similar techniques may also
be used to solve the other examples, but as the state variableis no longer one-dimensional, the
construction of the correct functions is not as simple or transparent. For this reason, we prefer to
derive the answers using Itô excursion theory, introducedby Itô in [2]; see [3] or [4] for accessible
accounts.

3.1 Example 1: fixed stops.

We write

L ≡ 1

2
σ2 d2

dx2
+ µ

d

dx
− ρ (3.1)

for the generator of the diffusionX with killing rate ρ. If f : R 7→ R is C2 and satisfiesLf = 0,
then by an application of Itô’s formula we have that

Mt ≡ e−ρtf(Xt) is a local martingale

which is bounded on the interval[0, T ], and therefore2 (M(t ∧ T ))t≥0 is a martingale. By the
Optional Sampling Theorem, it follows3 that

f(0) = E0[e−ρT f(XT )] (3.2)

2Here, of course,T is given by (2.4).
3The notationEx denotes expectation under the initial conditionX0 = x.
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so in order to compute the numerator and denominator in (2.3)it is enough to solve the ODELf = 0
in [−a, b] with the appropriate boundary conditions.

If we let−α < 0 < β be the roots of the quadratic

1

2
σ2z2 + µz − ρ = 0, (3.3)

then the solution to the ODE

Lf = 0, f(−a) = A, f(b) = B

is

f(x) =
(Aeβb − Be−βa)e−αx + (Beαa − Ae−αb)eβx

eαa+βb − e−αb−βa
.

Evaluating atx = 0 simplifies to

f(0) =
A(eβb − e−αb) + B(eαa − e−βa)

eαa+βb − e−αb−βa
. (3.4)

If we now takeA = exp(γa) andB = exp(−γb) we read off the joint Laplace transformL1 for this
first example:

L1(ρ, γ) =
eγa(eβb − e−αb) + e−γb(eαa − e−βa)

eαa+βb − e−αb−βa
. (3.5)

Substituting the form ofL1 into the expression (2.8) gives the valueϕ for this stopping rule. The
dependence of the right-hand side onρ is of course through the dependence ofα, β onρ as solutions
to (3.3). The mean of the hitting time can be derived from the Laplace transform as

E[T ] = −
∂L1

∂ρ
(0, 0)

=
b(eka − 1) − a(1 − e−kb)

µ(eka − e−kb)
(3.6)

after some calculations, wherek ≡ 2µ/σ2.

3.2 Example 3: one rising stop, one fixed stop.

We deal with this example first, and read off the solution to Example 2 as the special caseb = ∞.
Recall that we take the stopping time

T ≡ inf{t : X̄t − Xt = a or Xt = b}, (3.7)

whereX̄t ≡ sup0≤s≤t Xs. The processY ≡ X − X̄ is a continuous strong Markov process with
values inX ≡ (−∞, 0], and 0 is a recurrent point for this process. The Itô theory of excursions
[2] applies to this process, and we will make use of it. LetU denote the space of all excursions
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of Y away from 0, that is, continuous functionsf : R
+ → X with the property that for some

ζ = ζ(f) ∈ (0,∞], the lifetime of the excursion, the setf−1((−∞, 0)) is of the form (0, ζ).
RegardingU as a subset ofC(R+, R) induces the subset topology onU , and in factU is a Polish
space; see, for example, [4] for definitions and basic properties. The process̄X is a continuous
homogeneous additive functional ofY , growing only whenY = 0, and acts as the local time at zero
for Y . The open setY −1((−∞, 0)) is the disjoint union of countably many excursion intervalsIj ,
and the point processΠ ≡ {(Lj, ξ

j) : j ∈ Z} is a Poisson point process in(0,∞) × U , where

Lj = X̄(Ij),

ξj = Y |Ij
.

The mean measure ofΠ is Leb× n, wheren is theσ-finite excursion measure: see Itô [2]. The key
to effective use of Itô excursion theory is an explicit characterization of the excursion measuren.
Once the excursion has escaped from 0, it evolves like the diffusionX − X̄ until it first hits zero,
and it leaves 0 according to an entrance law.

We shall use excursion theory to calculate for anyθ ≥ 0 the expectation

L(ρ, θ) ≡ E[ exp(−ρT − θXT ) ]; (3.8)

evidently, once we have this, we can obtain the numerator anddenominator in (2.3) by suitable
substitutions and combinations. As explained in [3], we deal with expectations such as (3.8) by
introducing an independentexp(ρ) timeτ , and writing

E[ exp(−ρT − θXT ) ] = E[ e−θXT : T < τ ]. (3.9)

The way this is handled by excursion theory is to think ofτ as being the first event timeτ1 in a
Poisson process onR+ of intensityρ, with event timesτ1 < τ2 < . . .. This Poisson process of
times can be dealt with bymarkingthe excursions ofY , each independently of all others, according
to a Poisson process of intensityρ. The excursion point processΠ gets modified to the marked
excursion point process̃Π, where each excursionξj gets augmented tõξj ≡ (ξj, N j), whereN j is an
increasingZ+-valued path, representing the path of the marking process restricted to the excursion
ξj. We observe the marked excursion processΠ̃ until either local timeX̄ reachesb; or we see an
excursion which gets to−a before any mark;or we see an excursion which gets marked before it
reaches{0,−a}. To set some notation, let

A ≡ {excursions which are marked before reaching 0 or−a}; (3.10)

B ≡ {excursions which get to−a with no mark before reaching−a }. (3.11)

We shall calculaten(A) andn(B) quite simply, but for this we need to characterize the excursion
measure effectively. Let−α < 0 < β be the roots of the quadratic1

2
σ2t2 + µt − ρ; then routine

calculations lead to the conclusion that for any−a < x < 0

Ex[1 − e−ρ H0∧H
−a ] =

1 − e−βa

eαa − e−βa
(1 − e−αx) +

eαa − 1

eαa − e−βa
(1 − eβx) (3.12)

Ex[e−ρH
−a : H−a < H0] =

e−αx − eβx

eαa − e−βa
(3.13)
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whereHz ≡ inf{t : Xt = z} is the hitting time ofz. Since the measure of excursions which reach
−ε is asymptotic toε−1 asε ↓ 0 (see Williams’ decomposition of the Brownian excursion law[5],
II.67), we conclude that

n(A) = lim
ε↓0

1

ε
E−ε[1 − e−ρ H0∧H

−a ] =
βeαa + αe−βa − (α + β)

eαa − e−βa
, (3.14)

n(B) = lim
ε↓0

1

ε
E−ε[e−ρH

−a : H−a < H0] =
α + β

eαa − e−βa
. (3.15)

The first excursion inA ∪ B comes at local time rate

ν ≡ n(A ∪ B) =
βeαa + αe−βa

eαa − e−βa
. (3.16)

We shall stop the point process either at the first time we see an excursion inA ∪ B, or when local
time reachesb, whichever comes sooner.

Now we come back to the expectation (3.9), and consider how the eventT < τ could happen:
this couldeither be becausēX reachesb before the first excursion inA ∪ B; or because the first
excursion inA ∪ B happens beforēX reachesb, and is in fact an excursion inB. By simple
properties of Poisson processes, we discover after a littlethought that

L3(ρ, γ) ≡ E[ exp(−ρT − θXT ) ]

= E[e−θXT : T < τ ]

= e−νb−θb +

∫ b

0

νe−νy n(B)

ν
e−θ(y−a) dy

= e−(ν+θ)b +
n(B)eθa

ν + θ
(1 − e−(ν+θ)b).

We evaluate the objective (2.8) by settingθ = 0, γ to calculate the numerator and denominator.
After some calculations we obtain

E[e−ρT ] =
(α + β)(1 − e−νb) + νe−νb(eαa − e−βa)

ν(eαa − e−βa)
, (3.17)

As before, the mean ofT can be computed by differentiating the Laplace transform (3.17) with
respect toρ at zero. We find4 that

E[T ] =
σ2

2µ2
(eka − 1 − ka)(1 − e−mb) (3.18)

wherek = 2µ/σ2 as before, andm = k/(eka − 1).

4The calculations were carried out by a symbolic mathematicspackage, and by traditional methods.
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The simpler expressions which obtain whenb = ∞ reduce to

L2(ρ, θ) =
n(B)eθa

ν + θ
, E[e−ρT ] =

(α + β)

ν(eαa − e−βa)
, E[T ] =

σ2

2µ2
(eka − 1 − ka). (3.19)

The second of these agrees with the result of Glynn & Iglehart[1], equation (3.2), after translation
of notation.

3.3 Example 4: converging stops.

In this example, the stopping time is given by (2.7):

T ≡ inf{t : (1 + ε)X̄t − Xt = a}.

The analysis of this example is quite similar to Example 3, except that the excursion measure of the
excursions which stop the process now depends on how much local time has elapsed. When local
timeX̄ has reachedℓ, then any excursion which either contains a mark, or reaches−a+εℓ will stop
the Poisson point process. Exactly as at (3.14), (3.15), theintensity of excursions which are marked
before reaching−a + εℓ or zero is

nA(ℓ) ≡
βeα(a−εℓ) + αe−β(a−εℓ) − (α + β)

eα(a−εℓ) − e−β(a−εℓ)
, (3.20)

and the intensity of excursions which get to−a + εℓ before getting marked is

nB(ℓ) ≡
α + β

eα(a−εℓ) − e−β(a−εℓ)
. (3.21)

So in total, the intensity of excursions which stop the Poisson point process is

nA∪B(ℓ) =
βeα(a−εℓ) + αe−β(a−εℓ)

eα(a−εℓ) − e−β(a−εℓ)
. (3.22)

We can now calculate

F̄ (t) ≡ P (X̄ reachest before the stopping excursion)

= exp

[

−

∫ t

0

nA∪B(s) ds

]

= exp

{

−βt − ε−1 log

(

1 − e−(α+β)a

1 − e−(α+β)(a−εt)

) }

= e−βt

(

1 − e−(α+β)(a−εt)

1 − e−(α+β)a

)1/ε

,
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which we notice is decreasing witht, and vanishes whent = a/ε as it must. Using this, we deduce
after some calculations that

E[e−θXT −ρT ] =

∫ a/ε

0

e−θ((1+ε)x−a) nB(x)F̄ (x) dx

=

∫ a/ε

0

e−θ((1+ε)x−a) α + β

eα(a−εx) − e−β(a−εx)
F̄ (x) dx

=
1

ε

(

e−(θ+β)a

1 − e−(α+β)a

)1/ε ∫ 1

exp{−(α+β)a}

(1 − t)(1−ε)/ε t−c dt (3.23)

wherec = (θ + β)(1 + ε)/ε(α + β). The answer is therefore available in terms of incomplete beta
functions.

4 Placing of the stops.

The identification of the joint Laplace transform ofT andXT in each of the previous examples
now allows us to evaluate the objectiveϕ (2.8), and by varying the parametersa and b we are
able to optimizeϕ. However, numerical investigation shows that in many casesit is optimal to let
a → ∞. If this happens, then there would be no reason to place a lower stop, which is somewhat
unexpected. We can analyse this phenomenon quite completely for the case of fixed stops, which we
shall now do. The other examples are more complicated, and wehave not pursued the analysis of
this phenomenon in those instances; numerical investigations show similar behaviour. In any case,
since we observe that often for fixed stops the best thing is touseno lower stop, we are forced to
re-assess the modelling assumptions.

Accordingly, we will until further notice restrict attention to the fixed-stops example, Example 1.
The joint Laplace transformL1 of T andXT has been found (3.5), and so we are able to obtain an
explicit expression for the valueϕ using (2.8). Since we are concerned with the behaviour of this
asa → ∞ with all other parameters fixed, we shall use the (local) notation ϕ(a), where we have
explicitly

ϕ(a) =
L(ρ, 0) − eγcL(ρ, γ)

1 − L(ρ, 0)

= −1 +
1 − eγcL(ρ, γ)

1 − L(ρ, 0)

= −1 +
eαa − B1e

−βa − (1 − B1)e
γ(a+c) − B2e

γc(eαa − e−βa)

eαa − B1e−βa − (1 − B1) − B3(eαa − e−βa)
(4.1)

whereB1 = e−(α+β)b, B2 = e−(γ+β)b, B3 = e−βb, all positive constants less than 1. The large-a
behaviour of this expression is determined in the followinglittle result.
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Proposition 2. Consider the behaviour of the objective(2.8) in the case of fixed stops(2.4) as
a → ∞, with b fixed.

(i) If γ > α then
lim
a→∞

ϕ(a) = −∞ (4.2)

(ii) If α > γ andb > c then
ϕ(a) < ϕ(∞) (4.3)

for all a > 0.

PROOF. The proof is given in the Appendix A.

REMARKS. It is easy to understand the content of Proposition 2. In thecase whereγ > α, it is not
advantageous to leta → ∞ because although the expectation

E[e−ρT : XT = −a] ∼ e−αa (4.4)

is getting exponentially small, the utility when this eventhappens is getting large negative exponen-
tially, andat a greater rate. In contrast, ifγ < α, the exponential decay of the expectation (4.4)
beats the growth of the penalty, and the agent can ignore the penalty for stopping at a low negative
level. The conditionb > c is needed for the proof, but has a natural interpretation; ifb < c, we are
certain to be losing money every time we review our portfolio, so we would never consider entering
this trade.

For a reasonable solution, then, it seems that we requireγ > α. However, in typical examples,
this can lead to coefficientsγ of absolute risk aversion so high that the valueϕ is always negative, so
we would never engage in this trade! The point is that−α solves the quadratic (3.3), and ifµ > 0,
we will always haveα > 2µ/σ2, a lower bound which need not be small. So for a solution with
realistic values ofγ, and with a rationale for a lower stop at a finite position, it seems that we are
forced to consider situations whereµ is negative. But if the growth rate of the trade was negative,
and we are paying transaction costs, we would certainly never want to enter into it!

The resolution of these seemingly inconsistent requirements is to suppose thatwe are not certain
of the true value ofµ. If we have some prior distribution over possibleµ values which allows
positive probability thatµ is negative, we will find that even for small values ofγ the punishment
for stopping at very low levels really hurts, and we will wantto use a finite lower stop. On the other
hand, if the probability of decently positive values ofµ is quite high, we will be emboldened to take
part in the trade.

So now we briefly explain how the value is calculated in the situation where there is a prior
distribution overµ, given by the probability measurem. We will denote the value5 ϕ if the true drift

5We now remove the restriction that we are discussing Example1 only; what follows applies generally.
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is µ by ϕµ. This is calculated as explained in Section 2. Then by conditioning on the value ofµ, it
is clear that the overall valuēϕ of the trade when are uncertain ofµ is simply

ϕ̄ =

∫

ϕµ m(dµ). (4.5)

Ideally, we would tell some story where what we learn aboutµ from the outcomes of the successive
trades would be incorporated into our beliefs aboutµ, but as in practice such learning takes place
very slowly, we are safe to ignore it.

5 Numerical study.

We shall compare the stopping rules of Section 3 in just two examples. In all cases, we shall assume
thatσ = 0.3, γ = 2.5, c = 0.0005, andρ = 0.1. We have explored various other examples, and the
behaviour which we report in these two appears to be quite typical. A further comparison we make
is with a fixed-revision rule, where the investor choosesT > 0 fixed, and then revises his position
at multiples ofT , regardless of the performance of the asset. The objective is once again given by
(2.3), though now of courseT is constant. We find the agent’s best choice of fixedT and compare
the performance of this rule with the various rules determined by stops.

In the first example, we assume that the agent knowsµ = 0.15 with certainty. There are four
stopping rules to be considered now, and the results are given in the following table.

Besta Bestb Objective τ
Fixed stops ∞ 0.0184 4.1553 0.1224

Rising lower stop 0.0894 0.5314 0.0983
Rising lower, fixed upper stop ∞ 0.0184 4.1553 0.1224

Fixed exit time 0.8724 0.3780

Notice how with fixed stops or with a fixed upper stop and a rising lower stop, the best choice ofa
is a = ∞; it always pays to push the lower stop all the way down. If thisis done, then of course
the two stopping rules amount to stopping atb, and so it is no surprise that the values, the optimal
choices ofb, and the mean time per trade all agree. The valueϕ as a function ofa andb is displayed
in Figure 1; for finitea, the pictures for Examples 1 and 3 are in principle different, but in this
example they are not visibly different. Notice that the value for a fixed upper and rising lower stop
is substantially higher than for a rising lower stop only; this is of course to be expected, as we have
optimized over a larger set, but the magnitude of the improvement is noteworthy. The rising lower
stop example, Example 2, is quite different in character, with a much shorter mean time in trade.
The fixed revision rule performs very poorly relative to the two-sided stops rules, Examples 1 and
3.

To illustrate the point made in Section 4 for the reason why wemay want to use finite stops, we
take as our second example the situation where we do not suppose thatµ is known, but rather that
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there is a priorN(µ0, σ
2
µ) distribution forµ. We suppose thatµ0 = 0.15, with σµ = 0.3. The results

obtained are reported in the following table.

Besta Bestb Objective τ
Fixed stops 0.2159 0.0470 0.8416 0.0998

Rising lower stop 0.0603 0.2397 0.0439
Rising lower, fixed upper stop0.2375 0.0464 0.8398 0.0984

Fixed exit time 0.5627 0.0670

The calculated values are displayed in Figures 3, 4 and 5. Thevalues of all the rules have dropped,
particularly the stops trading rules. As with the certain growth rate, the two-stops rules do substan-
tially better than either the lower stop or the fixed time to revision. Mean times in trades have fallen
in all cases. As before, there is no appreciable difference between Examples 1 and 3; the rising
lower stop has very little effect.

6 Conclusions.

There are at least three reasons why we might in practice wishto trade to stops in some way. The
first is to reduce transaction costs: trading strategies which rebalance infrequently are always to be
preferred, and in some asset classes, such as EM currencies where costs might be typically 40bp,
daily rebalancing will quickly eliminate any profitable tendencies. The second reason for wishing
to trade to stops in some way is that until a position has been closed out, no profits can be booked
to it. There is therefore an incentive not to let a position run indefinitely, but to take profits at some
point. Following from this is a third reason; if our choice ofstops rests on current estimates of asset
dynamics, then it is important that we do not sit in the trade long after the parameter estimates have
wandered away, otherwise the expected performance may not materialize.

In this study, we have investigated several possible rules for placing fixed or moving stops, and
compared their performance. We have found that uncertaintyover the growth rate of the asset is an
essential feature of choosing stops; if we know that the asset is drifting up, we would never want to
place a lower stop. The possibility that the drift might be negative is what makes us want to put in
lower stops. If we use a fixed upper stop, we have found that there is little difference between using
a fixed or rising lower stop, but the mean time in the trade is smaller using a rising stop. Thus we
would recommend of the three rules studied here, the best to use is a fixed upper stop, with a rising
lower stop.
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A Proof of Proposition 2.

PROOF OFPROPOSITION2. The caseγ > α is easy; the dominant term in (4.1) is the termk1e
γ(a+c)

in the numerator, and this makes it obvious6 thatϕ(a) → −∞ asa → ∞.
The second case is more delicate. The limit ofϕ(a) is easily seen to be

ϕ(∞) = −1 +
1 − B2e

γc

1 − B3
.

If we now considerϕ(∞)−ϕ(a), we find a rational expression whose denominator is positive, and
whose numerator is (a positive multiple of)

H ≡ (1 − B3)z − (B2e
γc − B3)y − (1 − B2e

γc), (A.1)

where we setz ≡ eγ(a+c), y ≡ e−βa for brevity. Thus it will be sufficient to prove that the expression
H is non-negative.

Sinceb > c, we may writeε = b − c > 0, and thenH becomes

H = (1 − B3)z + B3(1 − e−γ−ε)y − (1 − B3e
−γε)

= (1 − B3)(z − 1) + B3(1 − e−γε)y − B3(1 − e−γε)

= (1 − B3)(z − 1) − B3(1 − e−γε)(1 − y). (A.2)

It is clear from the final equation that if we now holda > 0 fixed, and considerH as a function of
γ, thenH is convex, and vanishes asγ ↓ 0. To prove non-negativity ofH, we now investigate the
gradient ofH with respect toγ, which is

∂H

∂γ
= (1 − B3)(a + c)eγ(a+c) − εB3(1 − y)e−γε

= e−γε
[

(1 − B3)(a + c)eγ(a+b) − (1 − y)B3(b − c)
]

.

As γ ↓ 0, we obtain the limit

∂H

∂γ
(0) = (1 − B3)(a + c) − (1 − y)B3(b − c)

= (1 − e−βb)(a + c) − e−βb(b − c)(1 − e−βa)

= e−βb
[

(a + c)eβb + (b − c)e−βa − (a + b)
]

= (a + b)e−βb

[

a + c

a + b
eβb +

b − c

a + b
e−βa − 1

]

≥ (a + b)e−βb
[

eβc − 1
]

> 0,

6The denominator is asymptotic toeαa(1 − B3) which is certainly positive.
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where we have used convexity of the exponential function forthe first inequality. SinceH is convex,
and its derivative at zero is positive, it follows thatH is increasing, and therefore is everywhere non-
negative, since it is zero atγ = 0.

�
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Objective using fixed stops, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, c = 0.0005, rho = 0.1, mu = 0.15
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Figure 1: Example with knownµ = 0.15.
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Objective using rising lower stop only, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, c = 0.0005, rho = 0.1, mu = 0.15

a

Figure 2: Example with knownµ = 0.15, rising lower stop only.
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Objective using fixed stops, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, c = 0.0005, rho = 0.1, mu ~ N(0.15,0.09)
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Figure 3: Example withµ ∼ N(0.15, σ2).
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Objective using rising lower stop only, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, c = 0.0005, rho = 0.1, mu ~ N(0.15,0.09)
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Figure 4: Example withµ ∼ N(0.15, σ2), rising lower stop only.
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Objective using fixed upper and rising lower stop, repeated trades, discrete consumption
Sigma = 0.3, gamma = 2.5, c = 0.0005, rho = 0.1, mu ~ N(0.15,0.09)
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Figure 5: Example withµ ∼ N(0.15, σ2), rising lower stop and fixed upper stop.
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