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PATHWISE STOCHASTIC OPTIMAL CONTROL

L.C.G. ROGERS†

Abstract. This paper approaches optimal control problems for discrete-time controlled Markov processes by representing the
value of the problem in a dual Lagrangian form; the value is expressed as an infimum over a family of Lagrangian martingales of an
expectation of a pathwise supremum of the objective adjusted by the Lagrangian martingale term. This representation opens up
the possibility of numerical methods based on Monte Carlo simulation which may be advantageous in high-dimensional problems,
or in problems with complicated constraints.
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1. Introduction. The title of this paper refers to this: we intend to show that the solution of a stochastic
optimal control problem can be characterised in terms of a pathwise optimisation. In simple terms, this means
that we can randomly generate a sample path, and then solve a deterministic optimisation for that sample path
on its own. Repeating, we can get an approximation to the solution of the problem.

This approach is in contrast to the more familiar method of trying to find the value function of the problem,
and the associated optimal control; this more familiar approach requires consideration of all possible future
evolutions of the process at each time that a control choice is to be made. This method is well developed,
and generally effective, but there are certainly problems (such as the optimal control of a diffusion in high
dimensions) where the approach is impractical.

The approach we follow is foreshadowed by various papers in the control literature, where the relationship
between deterministic and stochastic optimal control is explored. There is for example the paper of Davis
& Burstein [4], where the theme of optimal control of a diffusion process is considered. The tools applied,
notably the use of the stochastic flow of a ‘null’ solution to the optimal control problem, are strongly specific to
that particular context, but the form of the solution, involving a pathwise optimsation of the original objective
modified by a Lagrangian term, invites extension. Other interesting papers around this theme are by Rockafellar
& Wets [11], Wets [13] and by Back & Pliska [2], who present the maximisation of some concave path functional
over a family of adapted processes in terms of the maximisation of the same functional modified by a linear
(Lagrangian) functional over the larger family of measurable processes. The linear functional is of course the
gradient of the objective at the optimum, in some suitable sense.

Both of these contributions leave the representation of the Lagrangian form of the solution in quite abstract
terms. By contrast, the approach to be followed in this paper derives simple and quite explicit representations
which may be the basis for effective numerical techniques. This approach does not require any convexity
assumptions on the objective, unlike [11],[13], [2], and the proofs are simple and completely elementary. Although
our first result has the appearance of the ‘Lagrangian form’ of the problem studied by [11], [13], [2], the
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subsequent results do not.

The approach of this paper develops the recent result of Rogers [12], proved independently by Haugh & Kogan
[6], on Monte Carlo pricing of American options1. This result says the following. Given an adapted process2

(Zt)0≤t≤T , the value Y ∗0 at time 0 of the optimal stopping problem satisfies

Y ∗0 ≡ sup
τ∈T

EZτ

= inf
M∈M0

E
[

sup
0≤t≤T

(Zt −Mt)
]
, (1.1)

where T is the family of stopping times, and M0 is the space of uniformly-integrable martingales started at 0.
The importance of this result is that it gives a way to find the value of an American option via Monte Carlo
simulation; given the sample path of Z −M , we simply stop at the best place, without considering what might
be happening on any other path, and in particular without considering what the value function might be at any
time. The numerical methods presented in [12] are crude, but good enough to get upper and lower bounds in a
number of interesting examples which were different by about 0.5%–2%. Andersen & Broadie [1] present a more
systematic way to search out ‘good’ martingales, and achieve bounds that are generally better. Jamshidian [7]
proposes a ‘multiplicative’ version of the result of [12], [6].

Now the optimal stopping problem is a particularly simple class of optimal control problems; could any variant of
the result (1.1) be used for more general stochastic control problems? Passing to complete generality introduces
a couple of major complications; the first is that the space of possible controls is no longer a two-point set, but
can be very large; and the second is that the choice of controls now affects the law of the process, and there is
no canonical choice. However, the main message of this paper is that we can extend the dual methodology that
worked so well for optimal stopping problems; we present a number of different forms of the main idea. We
present results only in a discrete-time setting; there are doubtless continuous-time analogues, but we prefer to
present the main ideas in the technically simplest form. Our main focus is on the development of Monte Carlo
methodologies that use the main ideas of the paper to solve optimal control problems. Existing techniques for
solving Hamilton-Jacobi-Bellman equations by PDE methods are reasonably satisfactory provided the problem
is not too involved, but it does not take much imagination to come up with examples that are so complicated
that only a simulation methodology could possibly work. The different forms of the main result that we derive
suggest different techniques for approaching the problem of Monte Carlo approximation of the solution. There
are also links to the ‘occupation measure’ approach to optimal control of a Markov process (which Kurtz &
Stockbridge [8] trace back to Manne [10]); this we discuss in an appendix.

2. The problem and its solution. We shall consider the optimal control of a discrete-time Markov
process with a finite time horizon T . The Markov process X takes values in some measurable space (X ,G),
and the control process a ≡ (a0, a1, . . . , aT−1) belongs to the class A of adapted processes with values in some
measurable space (A,B) of permitted controls. The objective is

E

[ T−1∑
j=0

fj(Xj , aj) + F (XT )
]
, (2.1)

to be maximised over a ∈ A. For simplicity, we shall make the assumption that the functions fj and F are
bounded measurable, to avoid having to worry over finiteness of objectives and other such inessential issues; this
restriction is made solely for ease of exposition. We shall suppose that there is some reference measure m over
(X ,G) such that for each a ∈ A the transition under control a has density p(x, x′; a) with respect to m, and

1See Davis & Karatzas [5] for a weaker partial result.
2... satisfying mild integrability conditions ...
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that there is some reference Markovian transition density p∗(x, x′). We write

ϕ(x, x′; a) =
p(x, x′; a)
p∗(x, x′)

for the controlled transition density with respect to the reference Markovian transition p∗. We write Vj(x) for
the value function of the problem starting from state x at time j:

Vj(x) = sup
a∈A

E

[ T−1∑
r=j

fr(Xr, ar) + F (XT )
∣∣∣∣ Xj = x

]
. (2.2)

We may view the effect of control as being an alteration of the law of the underlying process X. If we do this,
introducing the notation (0 ≤ k ≤ t < T )

Λk,t(a) ≡
t−1∏
r=k

ϕ(Xr, Xr+1; ar), Λt(a) ≡ Λ0,t(a) (2.3)

we may recast the optimisation problem in the form

V0(X0) = sup
a∈A

E∗
[ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )
]
, (2.4)

where the expectation is now taken with respect to the fixed reference probability P ∗. We shall have need of
the notations (for (bounded) measurable g, hj : X 7→ R) :

Pg(x, a) = E∗[ g(X1)ϕ(x,X1; a) | X0 = x], (x ∈ X , a ∈ A), (2.5)
(Lh)j(x) = sup

a

[
fj(x, a) + Phj+1(x, a)

]
, (x ∈ X , j = 0, . . . , T − 1). (2.6)

The first notation is just the expectation of g(X1) if at time 0 we are in state x and use action a; the second
defines the one-step Bellman operator.

The first result is the following.

Theorem 1.

V0(X0) = min
(hj)∈H

E∗
[

sup
a

{T−1∑
j=0

Λj(a){fj(Xj , aj) + E∗j (ηj+1)− ηj+1}+ ΛT (a)F (XT )
}]

(2.7)

= min
(hj)∈H

[
h0(X0) +

T−1∑
j=0

E∗ sup
a

Λj(a) { (Lh)j(Xj)− hj(Xj) }+
]

(2.8)

where the random variables ηj are defined in terms of the functions (hj) via

ηj+1 ≡ hj+1(Xj+1)ϕ(Xj , Xj+1; aj), (2.9)

and the set H is the set of sequences (hj)Tj=0 of (bounded) measurable functions from X to X , satisfying the
terminal condition

hT = F.
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Remarks. (i) To get from the form (2.4) to (2.7), we add a martingale-difference sequence E∗j (ηj+1)− ηj+1 to
the objective, then do a pathwise optimisation over the controls, take expectations, and finally minimise over
choice of the martingale difference sequence. This is formally similar to what we did at (1.1); as there, the
martingale-difference sequence can be interpreted as a Lagrangian process to account for the adapted constraint
on the controls a. Once we have included this term in the objective, we optimise pathwise, allowing ourselves
to see the entire path and pick controls in an anticipative way. Notice that because of the form (2.9) of ηj+1,
the conditional expectation appearing in (2.7) can as well be expressed as

E∗j (ηj+1) = Phj+1(Xj , aj). (2.10)

(ii) As we shall see, the minimum is attained, when we take hj = Vj . This fact is of little practical value, since
we cannot assume that we know V - it is after all the solution we seek! Nevertheless, the result allows us to
obtain upper bounds on the value function.

(iii) The choice of reference measure must be expected to be critical in practice. We cannot expect a simulation
method to work well if most of the paths simulated are quite unlike the paths of the optimally-controlled process.

(iv) The form (2.7) is well suited to Monte Carlo, since it involves an expectation of a pathwise supremum. The
second form (2.8) can be evaluated with no backward recursion. It can be reworked in the situation where

ψ(x) ≡
∫

sup
a∈A

p(x, x′; a) m(dx) <∞ (2.11)

for all x. This allows us to define a new transition density

p̄(x, x′) =
supa∈A p(x, x′; a)

ψ(x)

with corresponding path probability P̄ . Writing Ψj ≡
∏j−1
i=0 ψ(Xi), the final form (2.8) becomes simply

min
(hj)

[
h0(X0) +

T−1∑
j=0

ĒΨj{ (Lh)j(Xj)− hj(Xj) }+
]
. (2.12)

This is of interest because it expresses the solution in terms of a fixed measure, which we could call the maximum-
likelihood measure, together with a reweighting factor which is independent of any choice of controls.

Proof.The problem is to find

V0(X0) = sup
a∈A

v0(X0; a),

where of course we define

v0(X0; a) ≡ E∗
[ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )
]
.
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Now fixing a ∈ A, for any P ∗-martingale M ,

v0(X0; a) ≡ E∗
[ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )
]

= E∗
[ T−1∑
j=0

Λj(a){fj(Xj , aj) + ∆Mj+1}+ ΛT (a)F (XT )
]
,

since for a ∈ A the process Λ(a) is adapted. We shall specialise the martingale slightly by expressing the
martingale-differences as

∆Mj+1 = E∗j (ηj+1)− ηj+1, ηj+1 ≡ hj+1(Xj+1)ϕ(Xj , Xj+1; aj). (2.13)

Notice that

Λj(a)ηj+1 = Λj+1(a)hj+1(Xj+1); (2.14)

this fact is used in the following reworking. The first inequality comes by relaxing the constraint that a ∈ A:

V0(X0) = sup
a∈A

v0(X0; a)

= sup
a∈A

E∗
[ T−1∑
j=0

Λj(a){fj(Xj , aj) + E∗j (ηj+1)− ηj+1}+ ΛT (a)F (XT )
]

= sup
a∈A

E∗
[ T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)− ηj+1}+ ΛT (a)F (XT )
]

≤ E∗
[

sup
a

{T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)− ηj+1}+ ΛT (a)F (XT )
} ]

= E∗
[

sup
a

{T−1∑
j=0

{
Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)} − Λj+1(a)hj+1(Xj+1)

}
+ΛT (a)F (XT )

} ]
= E∗

[
sup
a

{
h0(X0) +

T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)− hj(Xj)}
} ]

≤ E∗
[
h0(X0) +

T−1∑
j=0

sup
a

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)− hj(Xj)}
]

= h0(X0) +
T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj)− hj(Xj) }
]

≤ h0(X0) +
T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj)− hj(Xj) }+
]
.
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Taking the infimum over the functions (hj) ∈ H, we get

V0(X0) ≤ inf
(hj)∈H

E∗
[

sup
a

{T−1∑
j=0

Λj(a){fj(Xj , aj)− ηj+1 + E∗j (ηj+1)}+ ΛT (a)F (XT )
} ]

.

≤ inf
(hj)∈H

[
h0(X0) +

T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj)− hj(Xj) }
] ]

≤ inf
(hj)∈H

[
h0(X0) +

T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj)− hj(Xj) }+
] ]
. (2.15)

In fact, there is equality throughout. To see this, we use the Bellman equation for the value function

Vj = (LV )j ,

so if we take hj = Vj , the sum in (2.15) vanishes and leaves only h0(X0) = V0(X0).

Remark. The proof also shows that

V0(x0) = min
(hj)∈H

[
h0(X0) +

T−1∑
j=0

E∗ sup
a

Λj(a) { (Lh)j(Xj)− hj(Xj) }
]
, (2.16)

a fact that we will refer back to later.

Theorem 1 gives us a way to approach a stochastic optimal control problem by Monte Carlo methods, by simu-
lating paths repeatedly, and computing the expressions inside the expectations (2.7). However, it is important
that this optimisation, over the sequence a, can be done efficiently, otherwise the method will be too slow.
Fortunately, it turns out that the optimisation required may be performed recursively, so we have a sequence
of optimisation problems over the choice of only one aj at a time.

To explain this in more detail, let us focus on the form (2.7). We can rewrite the expression inside the expectation
on the right-hand side,

T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)− ηj+1}+ ΛT (a)F (XT )

=
m−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)− ηj+1}+ Λm(a)Zm,

where

Zm ≡
T−1∑
j=m

Λm,j(a){fj(Xj , aj) + Phj+1(Xj , aj)− ηj+1}+ Λm,T (a)F (XT )

contains all dependence on am, . . . , aT−1. Recursively,

Zm = fm(Xm, am) + Phm+1(Xm, am)− ηm+1 + Λm,m+1(a)Zm+1

= fm(Xm, am) + Phm+1(Xm, am) + ϕ(Xm, Xm+1; am)
[
Zm+1 − hm+1(Xm+1)

]
.

Assuming we have already got the maximising values of am+1, . . . , aT−1, this is a maximisation over am only!
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3. Towards an algorithm. It is clear from the statement of Theorem 1 that the choice of the Lagrangian
functions (hj) is critical. The following little result offers a possible approach to finding good choices.

Proposition 2. Suppose that

B ≡ sup
a,x,x′

ϕ(x, x′; a) <∞

and suppose given a sequence (V (0)
j )Tj=0 of functions from X to X , with V

(0)
T = F . Define recursively the

functions (V (n)
k )Tk=0 for n = 1, 2, . . . by

V
(n+1)
k (x) = E∗

[
sup
a

{T−1∑
j=k

Λk,j(a){fj(Xj , aj)− V (n)
j+1(Xj+1)ϕ(Xj , Xj+1; aj)

+PV (n)
j+1(Xj , aj)}+ Λk,T (a)F (XT )

} ∣∣∣∣ Xk = x

]
, (3.1)

for x ∈ X , k = 0, . . . , T . Defining

∆(n)
k ≡ sup

x
|V (n)
k (x)− V (n−1)

k (x)|,

k = 0, . . . , T , n ≥ 1, we have

∆(n)
k ≤ (1 +B)

T∑
r=k+1

∆(n−1)
r . (3.2)

Remarks. The impact of Proposition 2 lies in the fact that V (n)
T = F for all n, so ∆(n)

T = 0 for all n. Hence
from (3.2) we conclude that (provided that the ∆(n−1)

k are finite)

∆(n)
k = 0 ∀n ≥ T − k.

Thus by applying the recursive construction of Proposition 2 we compute the true value function step by step
back from the end. Now in one sense all we have done is to re-express the familiar backward recursion of the
Bellman equation in a more complicated form, but there is nevertheless something gained; if we are not able
to compute the recursive recipe (3.1) exactly (as would be the case where we were using Monte Carlo in a
high-dimensional problem, for example), we can still use the approximate output of the nth stage to begin on
the (n+ 1)th.

Proof. Clearly,

−V (n)
j+1(Xj+1)ϕ(Xj , Xj+1; aj) ≤ −V (n−1)

j+1 (Xj+1)ϕ(Xj , Xj+1; aj) + ∆(n)
j+1ϕ(Xj , Xj+1; aj)

≤ −V (n−1)
j+1 (Xj+1)ϕ(Xj , Xj+1; aj) +B∆(n)

j+1

and

PV
(n)
j+1(Xj , aj) ≤ PV (n−1)

j+1 (Xj , aj) + ∆(n)
j+1
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so using this in (3.1) gives us

V
(n+1)
k (x) ≡ E∗

[
sup
a

{T−1∑
j=k

Λk,j(a){fj(Xj , aj)− V (n)
j+1(Xj+1)ϕ(Xj , Xj+1; aj)

+PV (n)
j+1(Xj , aj)}+ Λk,T (a)F (XT )

} ∣∣∣∣ Xk = x

]
≤ E∗

[
sup
a

{T−1∑
j=k

Λk,j(a){fj(Xj , aj)− V (n−1)
j+1 (Xj+1)ϕ(Xj , Xj+1; aj)

+PV (n−1)
j+1 (Xj , aj)}+ Λk,T (a)F (XT )

} ∣∣∣∣ Xk = x

]
+ (1 +B)

T∑
r=k+1

∆(n)
r

= V
(n)
k (x) + (1 +B)

T∑
r=k+1

∆(n)
r .

Thus

V
(n+1)
k (x)− V (n)

k (x) ≤ (1 +B)
T∑

r=k+1

∆(n)
r ,

and a similar bound on the other side establishes the result.

Discussion. For the purposes of this discussion, we assume for ease of exposition that fj = f for all j, and that
there exists a sequence of functions ψk such that the integral Pψk(x, a) is known in closed form. The reason for
this is to permit approximation of the value function as linear combinations of the ψk; this is like what Longstaff
& Schwartz [9] do.

When might we use this approach? When the steps of the dynamic programming algorithm are numerically
intensive, as for example in a situation where X is very high dimensional and the required integrations are difficult
to do, or when the pointwise optimisation over a ∈ A is hard, then the simulation-based approach of Theorem
1 may be of value. One advantage is that this approach only seeks the solution starting from a particular x0,
whereas the dynamic programming approach is calculating the solution from all starting points.

The first thing to do will be to simulate some paths of the process.

What law should we use for the initial simulation? Probably not the reference Markovian law P ∗,
as the paths of X under P ∗ can’t be expected to look very much like the paths of the optimally-controlled
process, and so we will get little relevant information about the objective if we just simulate from P ∗. This
problem becomes more acute the larger T , so it may be worth simulating initially only out to some T1 < T ,
and gradually increasing T1 as the algorithm proceeds. Since the intermediate rewards fj could all be zero (or
very small), we should not forget to include a term F (XT1) in the objective, as we will ultimately be steering
towards this. The maximum likelihood measure P̄ is also not a very promising candidate, as the law does not
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depend in any way on fj , F , but it suggests something we might try instead. Since the objective is

v0(X0; a) ≡ E∗
[ T−1∑
j=0

Λj(a)f(Xj , aj) + ΛT (a)F (XT )
]

= E∗
[

ΛT (a)
{T−1∑
j=0

f(Xj , aj) + F (XT )
} ]

' ε−1E∗
[

ΛT (a) exp
{
ε

T−1∑
j=0

f(Xj , aj) + εF (XT )
}
− 1

]

= ε−1E∗
[ T−1∏
j=0

ϕ(Xj , Xj+1; aj)eεf(Xj ,aj) .eεF (XT ) − 1
]
,

this suggests we might modify the definition of P̄ by defining

ψ(x) ≡
∫

sup
a∈A

p(x, x′; a)eεf(x,a) m(dx),

p̄(x, x′) =
supa∈A p(x, x′; a)eεf(x,a)

ψ(x)
.

The effect of this is to lead the process in directions where the running reward is higher. The choice of ε will
need to be tuned a bit.

How do we move from one simulation to the next? We suppose that our current estimate V (n)
t of the

value is expressed as a linear combination of the ψk:

V
(n)
t =

∑
k

c
(n)
t,k ψk

which allows us to write down expressions for PV nt (x, a). Once we have simulated sample paths (X(i)
0 , X

(i)
1 , . . . , X

(i)
T )

for i = 1, . . . , N , we perform the pathwise optimisation in (2.7), and then have some estimate of the value at
the points X(i)

t at time t. We now regress these values onto the functions ψk to get a next approximation to the
value. The next simulation should be according to what we now think is an approximation to the optimal path
law, and one way to do this would be as follows. Suppose that at time t on the simulated path we have reached
x; first choose x′ ∈ {X(i)

t , i = 1, . . . , N} at random, points ‘nearer’ to x being chosen with higher probability,
and jump to that point, x′ = X

(q)
t , say. Then make the move to y at time t + 1 according to the density

p(x′, ·; a(q)
t ), where a(q)

t was the control optimally chosen at X(q)
t .

4. Variants of the main result.

4.1. Least-squares characterisation. The study [12] of Monte Carlo valuation of American options
showed that the optimal policy was in some sense a ‘minimum-variance’ policy, and there is an analogue in this
setting too. Writing

Y (X;h) ≡ sup
a

{T−1∑
j=0

Λj(a){fj(Xj , aj)− ηj+1 + E∗j (ηj+1)}+ ΛT (a)F (XT )
}

9



(where the ηj are as at (2.9) ), Theorem 1 says that V (X0) = inf(hj)E
∗[Y (X;h) ]. Moreover, the infimum is

attained by taking hj = Vj , and in that case the proof of Theorem 1 shows that the random variable Y (X;V )
is almost surely constant. We therefore have the following alternative characterisation of the optimal solution.

Corollary 3. Assuming that V0 is non-negative3, the problem

inf
(hj)∈H

E∗[Y (X;h)2 ]

is solved by taking hj = Vj.

4.2. Multiplicative form of the main result. As in the case of Jamshidian’s version of the optimal
stopping result, we have a multiplicative form of Theorem 1.

Theorem 4.

V0(X0) ≤ inf
η>0

E∗
[

sup
a

{T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗j [ηj+1]
+ ΛT (a)F (XT )

} ]
, (4.1)

where the random variables ηj are positive. Provided

g∗j (Xj , Xj+1, aj) ≡ Vj(Xj)− Vj+1(Xj+1)ϕ(Xj , Xj+1; a) > 0, (4.2)

the result (4.1) can be strengthened to the statement

V0(X0) = min
η>0

E∗
[

sup
a

{T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗j [ηj+1]
+ ΛT (a)F (XT )

} ]
, (4.3)

with the minimising choice of ηj+1 being ηj+1 = g∗j (Xj , Xj+1, aj).

Remark. Condition (4.2) could be weakened to non-negativity; we simply need to change fj to fj − j, and
apply the Theorem to this modified problem (whose value is T (T − 1)/2 less than the value of the original
problem).

Proof. The proof follows similar lines to the proof of Theorem 1. Fixing a ∈ A, and letting η be any strictly
positive adapted process,

v0(X0; a) = E∗
[ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )
]

= E∗
[ T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗j [ηj+1]
+ ΛT (a)F (XT )

]
Just as before,

V0(X0) = sup
a∈A

v0(X0; a)

= sup
a∈A

E∗
[ T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗j [ηj+1]
+ ΛT (a)F (XT )

]

≤ E∗
[

sup
a

{T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗j [ηj+1]
+ ΛT (a)F (XT )

} ]
.

3Non-negativity is needed only because we use the reasoning E∗Y (X; h)2 = var(Y (X; h)) + E∗(Y (X; h))2 ≥ E∗(Y (X; h))2 ≥
(min E∗Y (X; h))2, and the final step is not true unless we have E∗Y (X; h) ≥ 0 for all h.
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Taking the infimum over all choices of η leads to the first statement (4.1).

For the second statement (4.3), we again use the Bellman equation; positivity of g∗j allows us to conclude that

fj(Xj , aj)
E∗j [ηj+1]

ηj+1 ≤ ηj+1

and once again the sum telescopes to V0(X0).

4.3. ‘Strong’ form of the main result. In Theorems 1 and 4, the effect of the controls is to modify the
measure; if we simulate paths according to the measure P ∗, then the controls applied do not affect the path of
X, they simply affect the value assigned to the path. It may sometimes be more helpful to be able to allow the
controls to act on the path directly, for which we need to formulate the problem slightly differently.

We shall suppose that if some control sequence (aj)T−1
j=0 is chosen, and the initial value X0 for the process is

given, then the trajectory X is determined by the relations

Xj+1 = ξ(j,Xj , aj , εj+1), (j = 0, . . . , T − 1) (4.4)

where the εj are independent random variables with common distribution, which we could take to be uniform
on [0, 1] if we wish. The function ξ expresses the Markovian evolution; from a theoretical point of view it may be
a little unusual to specify a Markov process in this way, rather than through the transition kernel, but from the
point of view of simulating the paths of the process, this is exactly the way we think of the controlled Markov
process! The difference is exactly the difference between a strong solution of a stochastic differential equation,
constructed over a given driving process, and a weak solution, constructed in law on some probability space (as
in Theorems 1 and 4).

Given a sequence (hj) of functions of the Markovian state variable, we define

Phj+1(x, a) = E hj+1(ξ(j, x, a, εj+1)).

Then we have the following result.

Theorem 5.

V0(X0) = min
(hj)∈H

E

[
sup
a

{T−1∑
j=0

(fj(Xj , aj)− hj+1(Xj+1) + Phj+1(Xj , aj)) + F (XT )
} ]

, (4.5)

where the Xj and aj are related through (4.4). The minimum is attained by taking hj = Vj.

Remarks. The Monte Carlo approach to evaluating the right-hand side of (4.5) would generate a sequence
of ε values, then find the optimal controls. In effect, what this means is that we have to solve a deterministic
optimisation problem along each path, where the choice of control will now affect where the path goes to, and
doing this is arguably no easier than solving the Bellman equation for the original stochastic control problem.
However, in situations where this deterministic control problem can be dealt with more simply, there may be
value in this result.

Proof. This follows closely the lines of the proof of Theorem 1; we leave this to the reader to check.
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4.4. Infinite horizon. So far we have been considering only finite-horizon problems, but it is at least as
important to develop methods for infinite-horizon discounted problems, as these will generate time-independent
strategies that are easier to interpret and implement. Throughout this section, we will assume that f is uniformly
bounded, and that we aim to find the value function V : X → X solving

V (x) = sup
a
E∗
[
f(x, a) + βϕ(x,X1; a)V (X1)

∣∣∣∣ X0 = x

]
. (4.6)

Under the assumptions that 0 < β < 1 and that f is uniformly bounded, it is well known that the Bellman
operator L : L∞(X )→ L∞(X ) defined by

Lg(x) ≡ sup
a∈A

E∗
[
f(x, a) + βϕ(x,X1; a)g(X1)

∣∣∣∣ X0 = x

]
(4.7)

is a monotone contraction with unique fixed point the value function V solving (4.6).

To see where the dual method leads in this infinite-horizon setting, we need to introduce for each h ∈ L∞(X )
the operator Lh : L∞(X )→ L∞(X ) defined by

Lhg(x) ≡ E∗
[
sup
a

{
f(x, a) + Ph(x, a)− h(X1)ϕ(x,X1; a) + βϕ(x,X1; a)g(X1)

} ∣∣∣∣ X0 = x

]
. (4.8)

Just as for L, the operator Lh is a monotone contraction with a unique fixed point, which we denote by g∗h.
The analogue of Theorem 1 for the infinite-horizon setting is the following.

Theorem 6. Assuming that f is uniformly bounded, the value function V is characterised as

V = inf
h
g∗h = min

h
g∗h, (4.9)

where the infimum is attained by taking h = βV .

Proof. Evidently, the supremum in the definition of Lhg will be reduced if we insist that a must be a function
only of X0 and not of X1; therefore

Lhg(x) ≥ sup
a
E∗
[
f(x, a) + Ph(x, a)− h(X1)ϕ(x,X1; a) + βϕ(x,X1; a)g(X1)

∣∣∣∣ X0 = x

]
= sup

a
E∗
[
f(x, a) + βϕ(x,X1; a)g(X1)

∣∣∣∣ X0 = x

]
≡ Lg(x).

Since LV = V , we deduce immediately that whatever h we shall have LhV ≥ V , and by induction we conclude
that for all n,

LnhV ≥ V.

By the Contraction Mapping Principle, LnhV → g∗h as n → ∞, and so for any h we have g∗h ≥ V , hence
V ≤ infh g∗h.

To conclude, we observe that taking h = βV gives for any x, a

f(x, a) + Ph(x, a) ≤ sup
a′
{f(x, a′) + Ph(x, a′)} = V (x).

12



Hence,

LhV (x) ≡ E∗
[
sup
a

{
f(x, a)− h(X1)ϕ(x,X1; a) + Ph(x, a) + βϕ(x,X1; a)V (X1)

} ∣∣∣∣ X0 = x

]
≤ V (x) + E∗

[
sup
a

{
−h(X1)ϕ(x,X1; a) + βϕ(x,X1; a)V (X1)

} ∣∣∣∣ X0 = x

]
= V (x).

By induction, LnhV ≤ V , and so taking the limit as n→∞ leads to the conclusion that g∗h ≤ V .

As in the finite-horizon case, we can ask about possible recursive methods for generating a better approximation
to the solution from an existing one. The following result, proved only under rather restrictive conditions, shows
that something can be done.

Proposition 7. Suppose that f is uniformly bounded, and that

B ≡ sup
x,x′,a

ϕ(x, x′; a) <∞,

and that β is so small that

β(1 +B)
1− βB

< 1.

Then the sequence (gn)∞n=0 generated by taking an arbitrary g0 ∈ L∞(X ) and letting gn+1 be the unique fixed
point of Lβgn converges to the value function.

Proof. The relation linking gn+1 and gn can be expressed as

gn+1(x) = E∗
[
sup
a

{
f(x, a)− βgn(X1)(X1)ϕ(x,X1; a) + βPgn(x, a)

+βϕ(x,X1; a)gn+1(X1)
} ∣∣∣∣ X0 = x

]
.

If we set ∆n ≡ supx |gn(x)− gn−1(x)|, then this leads to

gn+1(x) ≤ E∗
[
sup
a

{
f(x, a)− βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+β(1 +B)∆n + βϕ(x,X1; a)gn+1(X1)
} ∣∣∣∣ X0 = x

]
,

so if we set gn+1 ≡ g̃n+1 +A, we have

g̃n+1(x) +A ≤ E∗
[
sup
a

{
f(x, a)− βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+β(1 +B)∆n + βϕ(x,X1; a)(g̃n+1(X1) +A)
} ∣∣∣∣ X0 = x

]
≤ E∗

[
sup
a

{
f(x, a)− βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+β(1 +B)∆n + βBA+ βϕ(x,X1; a)g̃n+1(X1)
} ∣∣∣∣ X0 = x

]
13



Taking

A ≡ β(1 +B)∆n

1− βB

gives us

g̃n+1(x) ≤ E∗
[
sup
a

{
f(x, a)− βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+βϕ(x,X1; a)g̃n+1(X1)
} ∣∣∣∣ X0 = x

]
,

from which we conclude that g̃n+1 ≡ gn+1 −A ≤ gn. A similar argument for the lower bound gives

∆n+1 ≤
β(1 +B)
1− βB

∆n,

and the result follows.

Remarks. Proposition 7 shows how we may recursively construct approximations to the solution using this
methodology, provided the discount factor β is small enough. The assumptions of Proposition 7 will be unlikely
to be satisfied in most applications, but at least the methodology can be tried; the conditions are sufficient but
not necessary!

5. Conclusions. This paper has presented a novel strategy for solving stochastic optimal control problems,
using duality ideas. This approach is completely general, but is particularly well suited to problems where the
statespace is so large that it is hard to determine where the value function should be approximated closely.
The methodology involves modifying the objective by adding in appropriate martingale differences, and then
carrying out a pathwise optimisation, an approach that is well suited to Monte Carlo evaluation. We have shown
that under suitable regularity conditions a recursive method for improving the martingale difference sequence
converges to the true solution.

Choosing the martingale difference sequence well is of course key to the success of the method, but there remain
important issues in performing the simulations and related calculations in an efficient manner. The whole study
of numerical implementation is barely begun.
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Appendix A. Links to the occupation measure approach. The approach of Theorem 1 is in some sense
a dual approach, but how is it related to another dual approach, the occupation measure approach, as explained
and studied in [10], [3], [8]? In this approach, the original optimization problem is re-expressed as

sup
(µt),(κt)

T∑
t=0

∫
X
µt(dx)

∫
A

κt(x, da)ft(x, a), (A1)

subject to the constraints

µ0(dx) = δx0(dx), (A2)

µt+1(dx) =
∫
X
µt(dx′)

∫
A

κt(x′, da)p(x′, x; a)m(dx), (t = 0, . . . , T − 1) (A3)

where we write fT (x, a) ≡ F (x), and each of the measures µt is a probability measure, and κt is a Markov
kernel from X into A for each t.

The interpretation of this is that µt is the law of the controlled process at time t under controls given by the
Markov kernels κt; frequently, the Markov kernels will be degenerate, in the sense that κt(x, da) = δα(t,x)(da)
for all t, x, but this formulation allows randomised decision rules also.

Introducing Lagrangian multiplier functions vt : X → R for each t = 0, . . . , T changes the optimisation problem
into the Lagrangian form

sup
µt,κt≥0

[
v0(x0) +

T−1∑
t=0

∫
X
µt(dx)

{
−vt(x) +

∫
A

κt(x, da)ft(x, a) +
∫
A

κt(x, da)Pvt+1(x, a)
}

+
∫
X
µT (dx)

∫
A

κT (x, da){F (x)− vT (x)}
]

= sup
µt,κt≥0

[
v0(x0) +

T−1∑
t=0

∫
X
µt(dx)

∫
A

κt(x, da)
{
−vt(x) + ft(x, a) + Pvt+1(x, a)

}
+
∫
X
µT (dx){F (x)− vT (x)}

]
.

We deduce the dual-feasibility conditions

vt(x) ≥ ft(x, a) + Pvt+1(x, a) (x ∈ X , a ∈ A, t = 0, . . . , T − 1) (A4)
vT (x) ≥ F (x) (A5)

and the dual problem is now to minimise v0(x0) subject to (A4),(A5). These conditions are obviously equivalent
to

vt(x) ≥ sup
a∈A

{
ft(x, a) + Pvt+1(x, a)

}
≡ (Lv)t(x) (x ∈ X , t = 0, . . . , T − 1) (A6)

vT (x) ≥ F (x) (A7)

which is solved by taking vT = F , and vt = (Lv)t for 0 ≤ t < T - the Bellman equations. The value of the dual
problem is also evidently equal to the value of the primal problem. However, it will often be the case that the
operations involved in the Bellman equations (taking expectations, and pointwise maximisation) will be hard
to do numerically, so casting the dual problem in Lagrangian form gives us

L({gt}) ≡ inf
(vt)

{
v0(x0) +

T−1∑
t=0

∫
gt(x){(Lv)t(x)− vt(x)} m(dx)

}
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for non-negative multiplier functions (gt). The dual form of this programming problem is

sup
gt≥0

L({gt}) ≤ V0(x0),

and (2.8) is the same expression, for a particular choice of the multipliers (gt), attaining the value.
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