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Abstract

The idea we develop in these notes is that firm sizes evolve as log Brownian motions
dSt = St(σdWt + µdt) where the constants µ, σ are characteristics of the firm, chosen
from some distribution, and that the firms are killed randomly. At any given time,
we see a firm of a given size; what can we say about its characteristics given its size?
How would we invest in such a market? What do these assumptions imply about the
distribution of sizes?

1 Introduction.
intro

Problems of dynamic optimal investment have been studied for many years now, going back
at least to the landmark paper of Merton [Merton, 1971]; but the theory does not always tie
up well with practice. One of the main conclusions of [Merton, 1971] is that for a constant
relative risk aversion agent trying to optimize his utility of terminal wealth in a log-Brownian
market, the optimal strategy is to invest his wealth in fixed proportions in the available assets.
This is memorable and simple, but applying it is problematic. It is problematic because the
optimal proportions depend on the growth rates of the assets and their volatilities, and these
will not be known. The growth rates in particular cannot even be estimated with any degree of
confidence (see, for example, Section 4.2 of [Rogers, 2013].) Nevertheless, the mean-variance
type of strategy which Merton’s result implies remains a commonly-used approach to portfolio
management, with point estimates substituted for the unknown true values, and little account
taken of the estimation error.

In contrast, the stochastic portfolio approach of Fernholz [Fernholz, 2002] aims to base
portfolio choice on market observables, particularly, the relative sizes of firms in the whole
market. While this approach does not entirely escape from the need to know something
about the parameters of the asset dynamics, it advances a very different way of thinking of
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the problem, and raises a number of interesting questions: Why should the size of a firm
be an indicator for its performance? How could we explain how size and performance may
be related? How would we exploit any information that may be found in the firm size? It
is generally believed that the returns of small firms are superior to those of large firms; one
possible explanation is as a liquidity premium [Fernholz and Karatzas, 2006], but there may
be other features at work here, such as survivorship bias.

What we propose in this paper is a very simple mechanism to explain why size could
be informative about the characteristics of a firm. We shall suppose that independent firms
of unit size are created at the times of a Poisson process, and at the time of their creation
they receive a randomly-chosen drift and volatility. They then evolve until a random time
at which they disappear from the market1. In such a model, the size of a live firm carries
information about the random growth and volatility parameters, and if the distributions are
set up suitably, it turns out to be possible to extract this information in relatively simple
closed forms. This is the business of Section 2, where we show how to derive the conditional
distribution of the growth rate and volatility of a stock, given its size. We then weaken the
independence assumption in Section 3, and show how to use the firm size in the construction
of portfolios. The first approach is to assume that we use only the firm sizes, and deduce
the conditional distribution of the growth rate and the volatility; and the second would be to
assume that the volatility could be estimated with sufficient precision that it might be assumed
known, and then use the size and the volatility to deduce the conditional distribution of the
growth rate.

The model studied here has implications for the distribution of firm sizes2, and can be
used to explore the distribution of the sizes of firms of different ages3. This is investigated in
Section 4, and conclusions follow in Section 5.

There is already an extensive literature on the distribution of firm sizes, much of which
refers back to a principle called Gibrat’s Law, which begins from the statement4 that the log
of a firm’s size should evolve as a Lévy process, and concludes that the firm size distribution
should be log-normal, as would be expected from the Central Limit Theorem5.

It would be impossible to conduct a full literature survey, but we mention here a few
particularly interesting or influential contributions. Hopenhayn [Hopenhayn, 1992] presents

1This could be interpreted as bankruptcy, or merger, or any other way that a firm could vanish. Inter-
estingly, Hopenhayn [Hopenhayn, 1992] cites evidence that in the US, forty percent of manufacturing firms
disappear and are replaced by new ones over a five-year period.

2See the plots in [Fernholz, 2002] which display the remarkable stability of plots of log size against log rank
for US equities.

3The paper of Cabral & Mata [Cabral and Mata, 2003] presents evidence based on a study of Portuguese
firms that the distribution of the sizes of older firms tends to have higher mean and less skew.

4We paraphrase here, to give the hypothesis in contemporary form.
5In some quarters, Gibrat’s Law is stated as saying that the tail of the firm-size distribution should behave

as a power law; see, for example, [Simon and Bonini, 1958]. In practice, it is hard to distinguish between a
log-normal distribution and a Pareto distribution. Kaizoji et al. [Kaizoji et al., 2006] find that while US firm
sizes have an approximately log-normal distribution, a power-law tail better explains firms size data in Japan.
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a model where individual firms are subject to Markovian shocks and then optimally choose
whether or not to continue. If they do, their outputs for the next period are optimally chosen.
New firms enter until their marginal profitability falls to zero, and Hopenhayn derives a steady-
state equilibrium solution. The steady-state nature of the solution seems to be the only feature
shared with the present study. Ijiri & Simon [Ijiri and Simon, 1967] propose a model for firms
in a sector where the log sizes evolve as AR(1) processes, together with a common sector-wide
deterministic growth effect. In a similar vein, Hashemi [Hashemi, 2000] proposes to model the
evolution of the log size as an Ornstein-Uhlenbeck process, and then compares the theoretical
log-gaussian steady-state distribution of firm size with empirical data. In an empirical study
of data on Portuguese firms, Cabral & Mata [Cabral and Mata, 2003] show that the density
of firm size varies with age, generally moving to the right and flattening as the firms get older.
What differentiates our study from most of the existing literature is that we aim to use firm
size as an indicator for investment; the distribution of firm sizes as such is for us merely a
staging point on our route.

2 Modelling assumptions.
mod

Suppose that firms are born at the times of a Poisson process of intensity ρ. At the time of
birth, a firm is of unit size, and is given a drift µ and a volatility σ drawn from some density.
The size St of a firm evolves as

dSt = St(σdWt + µdt) (2.1) dS

where W is a Brownian motion independent of the values of (µ, σ) of the firm, and independent
of all Brownian motions of all other firms. The firm is killed at rate ε > 0. This rate will be
allowed to depend on σ as

ε = ε(σ) = 1
2
ω2

0σ
2ψ (2.2) epssig

for some ω0 > 0 and ψ ∈ [0, 1). Suppose that the times of the Poisson process before 0 are
given by 0 > −τ1 > −τ2 > . . .. Letting X ≡ logS denote the log size of a firm, we have that
X is a Brownian motion with volatility σ and drift c ≡ µ− 1

2
σ2. It turns out to be convenient

to reparametrize the characteristics of the firm as (θ, σ) ≡ (c/σ2, σ). In these terms, we shall
let m denote the density of the pair (θ, σ) selected independently for each firm.

At time 0, there will be a random number of firms alive6. By considering the possible
survival of each of the firms born, it is not hard to see that the time-0 density of firms of

6If ψ = 0 and therefore ε is constant, then the distribution of firms still alive will be Poisson with mean
ρ/ε, since this is the limiting distribution of the length of an M/M/∞ queue with arrival rate ρ and service
rate ε.
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log-size x and characteristics (θ, σ) will be

q(x, θ, σ) ≡
∑
n≥0

∫ ∞
0

(ρt)ne−ρt

n!
ρ exp(−εt− (x− ct)2/2σ2t)

dt√
2πσ2t

m(θ, σ)

=

∫ ∞
0

ρ exp(−εt− (x− ct)2/2σ2t)
dt√

2πσ2t
m(θ, σ)

=
ρ exp(xθ − |x|

√
θ2 + δ2)

σ2
√
θ2 + δ2

m(θ, σ), (2.3)

where
δ ≡
√

2ε/σ = ω0 σ
ψ−1. (2.4) deltadef

What choices of m could be made to ensure that the conditional density of (θ, σ) given x
would be tractable? We shall consider two particularly amenable alternatives7

m(θ, σ) = Bλ exp(ξθ − A
√
θ2 + δ2) {θ2 + δ2}λ/2 σ−ν (2.5) m01

for λ = 0, 1, for some A > 0, ν > 1, |ξ| < A, and normalization constant Bλ. The integral
with respect to θ of (3.24) can be expressed in terms of Bessel functions, using the identities
(A.7), (A.7). Recalling that δ = ω0 σ

ψ−1, we see from (A.10) that the integral over σ will be
finite only if ν > 1. Lengthy but routine calculations lead us to explicit expressions for the
normalizing constants B0, B1; we defer these calculations to Appendix A.

The point of these choices is that in either case, conditional on x and σ, θ has a general-
ized hyperbolic distribution; specifically, the conditional distribution of θ given x and σ is
GH(· | λ, α, β, δ, 0) for λ = 0, 1, where α = A + |x|, β = x + ξ, δ = ω0 σ

ψ−1. The mean is
given by the formula

E[ θ | x, σ ] =
δβKλ+1(γδ)

γKλ(γδ)
, (2.6) Etheta

where γ ≡
√
α2 − β2.

We can also obtain the marginal distribution of x by integrating out the variables θ and
σ. Writing

α = A+ |x|, β = x+ ξ, γ =
√
α2 − β2, (2.7) names

7Integer λ all lead to tractable forms, because exKλ− 1
2
(x)xλ+

1
2 is a polynomial of degree λ for any non-

negative integer λ. Going beyond λ = 1 does not seem to add much.
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we have

q(x) =

∫∫
ρBλ exp

{
βθ − α

√
θ2 + δ2

}
(θ2 + δ2)(λ−1)/2σ−ν−2 dθdσ (2.8)

=

∫∫
ρBλ GH(θ |λ, α, β, δ, 0) 2αλKλ(γδ)(δ/γ)λσ−ν−2 dθdσ (2.9)

=

∫ ∞
0

ρBλ 2αλKλ(γδ) (δ/γ)λ σ−ν−2 dσ

= 2ρBλ(α/γ)λ
∫ ∞

0

σ−ν−ψ(ω0 σ
ψ−1)λKλ(γδ) σ

ψ−2dσ

= 2ρBλ(α/γ)λ
∫ ∞

0

(
v

γω0

)(ν+ψ)/(1−ψ)(
v

γ

)λ
Kλ(v)

dv

γω0(1− ψ)

=
2ρBλα

λ

1− ψ
ω
−(1+ν)/(1−ψ)
0 γ−2λ−1−(ν+ψ)/(1−ψ)

∫ ∞
0

vµ
′−1Kλ(v) dv

=
ρBλα

λ

1− ψ
ω
−(1+ν)/(1−ψ)
0 γ−2λ−1−(ν+ψ)/(1−ψ) 2µ

′−1 Γ

(
µ′ − λ

2

)
Γ

(
µ′ + λ

2

)
, (2.10)

where µ′ = λ+ (ν + 1)/(1−ψ). This is an unusual density; it has polynomial tails and is not
differentiable at zero, but is otherwise not too bad.

3 Investing based on firm size.
invest

At time 0, we see a (Poisson) number N of firms of different sizes, and from the sizes we can
deduce the conditional distribution of their characteristics (θ, σ) ≡ (µσ−2− 1

2
, σ). How would

an agent choose to invest in the available assets?
To answer this, let us suppose that the size at time t of the ith firm which was available8

at time zero is denoted by Sit . Our modelling hypothesis tells us that

dSit = Sit(σidW
i
t + µidt), (i = 1, . . . , N) (3.1) dS1

where the W i are independent Brownian motions, and the σi and µi are unknown constants
having the conditional distributions implied by the joint density (3.22), and the marginals
(3.24). Suppose that an agent starts with wealth 1, and may invest in these N risky assets,
as well as a bank account delivering interest at constant continuously-compounded rate r; his
objective is to achieve

supE log(wT ) (3.2) logobj

where wt is his wealth at time t. We shall also suppose that the agent only considers fixed-mix
rules, where his wealth evolves as9

dwt = wt
[
rdt+ π · (σdWt + (µ− r1) dt)

]
(3.3) dw1

8We shall suppose that t is small enough that we may neglect the deaths and births of firms during (0, t).
9We use 1 to denote the column vector of 1’s.
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where π ∈ RN is a fixed vector, and we (ab)use the symbol σ to denote the diagonal matrix
diag(σi). The reason to restrict to such rules is that if we were to consider the classical
Merton [Merton, 1971] investment problem (see [Rogers, 2013] for a recent account) where
the agent knew the constant growth rates and constant volatility of the assets, and if his
utility was CRRA, then he would invest fixed proportions of his wealth in the risky assets.
We are here in a situation where the growth rates and volatilities are assumed constant but
not known, the agent’s utility is CRRA, so it is a reasonable approximation to restrict to such
strategies.

Accepting this, if the agent invests as in (3.3) his wealth at time T will be

logwT = π · (σWT + (µ− r1)T ) + (r − 1
2
|σTπ|2)T. (3.4)

Therefore, his objective (3.2) is simply

E logwT = π · (Eµ− r1)T + (r − 1
2
π · E(σσT )π)T. (3.5) obj2

Optimizing this over π leads to the optimal choice

π∗ = E(σσT )−1(Eµ− r1), (3.6) pistar

where the expectations are expectations conditional on what the agent is assumed to know.
The message therefore is that all we need is to calculate the conditional expectations of µi
and σ2

i given the log-size xi, and then deduce π∗ from (3.6).
We will consider two situations, the first where the agent observes only the log-sizes xi;

and the second where the agent observes the log-sizes xi and also the covariance structure of
the assets. In principle, by observing the evolution of the Si, the agent is able to refine his
knowledge of σi, µi as time passes, but this would be quite intractable if treated completely;
we therefore resort to the simplifying assumption that there is no change in the agent’s beliefs
about the model parameters over the investment window.

3.1 Case 1: Observation of log sizes only.
case1

Here we shall suppose that the only information which the agent exploits is the initial
log-sizes xi ≡ logSi0, i = 1, . . . , N , and he calculates the conditional means and variances
given those observations. This modelling story is not wrong, but it is limited, because our
assumptions make all of the assets independent. Empirical evidence firmly rejects this, and
suggests instead some generally positive correlation between different stocks. Introducing
dependence into the model has to be done with some care. The obvious first attempt is
just to make the evolutions of the different log firm sizes to be correlated Brownian motions,
but this is completely intractable. It is completely intractable because conditional on the
sizes of the surviving firms at time 0 we have information about the joint moves of the
underlying Brownian motions; and so the mean growth rates and volatilities of each of the
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individual stocks will be conditionally dependent on the observed values of all of the stocks.
The very simple forms of the joint distributions which we carefully constructed in Section 2
are destroyed.

So what we shall suppose is that we observe log firm sizes X i
t which evolve as

Y i
t = X i

t + Zt (3.7) Xeqn

where the processes X i are independent, and evolve as presented in Section 2, and Z is a
stationary Ornstein-Uhlenbeck process independent of the X̃ i, evolving as

dZt = σ̄ dW̄t − bZt dt (3.8) dZ

for some constants σ̄ and b > 0. We could interpret Z as some overall business cycle effect if
we so desired; this would give us some notion of the magnitude of b, since business cycles are
generally held to last of the order of 3-5 years. Whatever the interpretation of Z, including
it in the modelling story has two effects. The first is that values E µ and E(σσT ) appearing
in the expression (3.6) for π∗ have to be replaced by their conditional expectations given the
observed value of Y i

0 . The effect of this is to replace the conditional expectation E[·|x] by the
convolution integral

E[ · | y ] =

∫
E[ · | y − z ] pM(z) dz (3.9) conv

where pM is the invariant N(0, σ̄2/2b) density of the stationary process Z. The second effect
of this modelling assumption is to change the covariance structure10 of the available assets to
be positively correlated.

Changing the story in this way alters the wealth dynamics (3.3) to11

dwt = wt
[
rdt+ π · (σdWt + σ̄dW̄t + (µ− r1)dt)

]
. (3.10) dw2

The analysis which led to the expression (3.6) for π∗ goes through with minor modification
to give us

π∗ = V̄ −1(Eµ− r1), (3.11) pistar2

where
V̄ ≡ V + σ̄211T (3.12) Vbardef

and V is the diagonal matrix E[diag(σ2
i )]. The form of V̄ is simple enough to invert explicitly,

and we find after a few calculations that

π∗ = V −1(Eµ− r1)− σ̄2V −11
1 · V −1(Eµ− r1)

1 + σ̄2 1 · V −11
. (3.13)

10We shall assume that the time scale T of the investor is sufficiently small relative to the business cycle
time scale that we may neglect the effect on the assets’ drifts due to the presence of Z.

11For simplicity, we shall ignore the mean-reversion effect in the drift of Z. We have insisted that the
investment horizon is small enough that the hypothesis that there is no change in the population of firms is
a reasonable one, and such time scales would be small compared to the time scales of a business cycle.
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We therefore see that in order to calculate the optimal investment proportions, we need to be
able to calculate the conditional expectations E[µ|x] and E[σ2|x].

Calculating an expression for E[σ2|x] requires minor modification of an earlier calculation.
At (3.27) we integrated out θ and σ to obtain the marginal density of x, and to obtain the
conditional variance we simply need to insert a factor of σ2 into the integrand. The effect
of this is to change ν to ν − 2, and the final expression (3.29) with this substitution gives
q(x)E[σ2|x]:

q(x)E[σ2|x] =
ρBλα

λ

1− ψ
ω
−(ν−1)/(1−ψ)
0 γ−2λ−(ν−1)/(1−ψ) 2µ∗−1 Γ

(
ν − 1

2(1− ψ)

)
Γ

(
ν − 1

2(1− ψ)
+ λ

)
,

(3.14) f1

where µ∗ = λ+ (ν − 1)/(1− ψ).
Calculating E[µ|x] = E[σ2(θ + 1

2
)| x ] is a bit more involved, but we can use the known

distribution of θ conditional on x and σ to express E[σ2θ |x] = E[σ2E{θ|x, σ}|x]. We have

E[ θ |x, σ ] =
δβKλ+1(δγ)

γKλ(δγ)
, (3.15)

so we can use the notations (3.26) and modify the expression at (3.28) to give

q(x)E[σ2θ|x] =

∫
ρBλ(x+ ξ) 2αλKλ+1(γδ)(δ/γ)λ+1σ−ν dσ

=
ρBλ βω

−(ν−1)/(1−ψ)
0

1− ψ
2µ∗−1 αλ

γµ∗+λ+1
Γ

(
µ∗ − λ− 1

2

)
Γ

(
µ∗ + λ+ 1

2

)
. (3.16)

where µ∗ = λ+ (ν − ψ)/(1− ψ).

3.2 Case 2: Observation of log sizes and covariance structure.
case2

In this subsection, we will suppose that the agent knows for each of the available firms not
just the size, but also the volatility. This is a reasonable assumption to make, since it is
typically much easier to make a reliable estimate of volatility than growth rate; see, for
example, [Rogers, 2013], Chapter 4.2. However, it would be a mistake to assume that the
assets evolve independently, and it is therefore necessary to say what is assumed about their
co-movement. What we shall suppose is that the log-size xi of firm i evolves as

dxit = σ0 exp(−Rxit) dW i
t + σ̄ dW̄t + FV term, (3.17) dxi

where R > 0 is a constant, and the Brownian motions W i, W̄ are independent. This modelling
story reflects the idea that all firms are affected by market-wide movements, but smaller
firms are more influenced by their own idiosyncratic effects. The assumed form (3.17) of the
evolution of the xi leads in turn to the form

a ≡ σσT = σ̄2 11T + σ2
0 diag( exp(−2Rxi) ) (3.18) a_2
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for the instantaneous covariance for this example. The optimal investment proportions are
again determined by (3.6), this time taking the form

π∗ = a−1(E[µ |x, σ ]− r1) (3.19) pistar3

where the conditional expectation E[µ |x, σ ] = σ2{E[θ|x, σ] + 1
2
} is determined using (3.25).

Suppose that firms are born at the times of a Poisson process of intensity ρ. At the time of
birth, a firm is of unit size, and is given a drift µ and a volatility σ drawn from some density.
The size St of a firm evolves as

dSt = St(σdWt + µdt) (3.20) dS

where W is a Brownian motion independent of the values of (µ, σ) of the firm, and independent
of all Brownian motions of all other firms. The firm is killed at rate ε > 0. This rate will be
allowed to depend on σ as

ε = ε(σ) = 1
2
ω2

0σ
2ψ (3.21) epssig

for some ω0 > 0 and ψ ∈ [0, 1). Suppose that the times of the Poisson process before 0 are
given by 0 > −τ1 > −τ2 > . . .. Letting X ≡ logS denote the log size of a firm, we have that
X is a Brownian motion with volatility σ and drift c ≡ µ− 1

2
σ2. It turns out to be convenient

to reparametrize the characteristics of the firm as (θ, σ) ≡ (c/σ2, σ). In these terms, we shall
let m denote the density of the pair (θ, σ) selected independently for each firm.

At time 0, there will be a random number of firms alive12. By considering the possible
survival of each of the firms born, it is not hard to see that the time-0 density of firms of
log-size x and characteristics (θ, σ) will be

q(x, θ, σ) ≡
∑
n≥0

∫ ∞
0

(ρt)ne−ρt

n!
ρ exp(−εt− (x− ct)2/2σ2t)

dt√
2πσ2t

m(θ, σ)

=

∫ ∞
0

ρ exp(−εt− (x− ct)2/2σ2t)
dt√

2πσ2t
m(θ, σ)

=
ρ exp(xθ − |x|

√
θ2 + δ2)

σ2
√
θ2 + δ2

m(θ, σ), (3.22)

where
δ ≡
√

2ε/σ = ω0 σ
ψ−1. (3.23) deltadef

What choices of m could be made to ensure that the conditional density of (θ, σ) given x
would be tractable? We shall consider two particularly amenable alternatives13

m(θ, σ) = Bλ exp(ξθ − A
√
θ2 + δ2) {θ2 + δ2}λ/2 σ−ν (3.24) m01

12If ψ = 0 and therefore ε is constant, then the distribution of firms still alive will be Poisson with mean
ρ/ε, since this is the limiting distribution of the length of an M/M/∞ queue with arrival rate ρ and service
rate ε.

13Integer λ all lead to tractable forms, because exKλ− 1
2
(x)xλ+

1
2 is a polynomial of degree λ for any non-

negative integer λ. Going beyond λ = 1 does not seem to add much.
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for λ = 0, 1, for some A > 0, ν > 1, |ξ| < A, and normalization constant Bλ. The integral
with respect to θ of (3.24) can be expressed in terms of Bessel functions, using the identities
(A.7), (A.7). Recalling that δ = ω0 σ

ψ−1, we see from (A.10) that the integral over σ will be
finite only if ν > 1. Lengthy but routine calculations lead us to explicit expressions for the
normalizing constants B0, B1; we defer these calculations to Appendix A.

The point of these choices is that in either case, conditional on x and σ, θ has a general-
ized hyperbolic distribution; specifically, the conditional distribution of θ given x and σ is
GH(· | λ, α, β, δ, 0) for λ = 0, 1, where α = A + |x|, β = x + ξ, δ = ω0 σ

ψ−1. The mean is
given by the formula

E[ θ | x, σ ] =
δβKλ+1(γδ)

γKλ(γδ)
, (3.25) Etheta

where γ ≡
√
α2 − β2.

We can also obtain the marginal distribution of x by integrating out the variables θ and
σ. Writing

α = A+ |x|, β = x+ ξ, γ =
√
α2 − β2, (3.26) names

we have

q(x) =

∫∫
ρBλ exp

{
βθ − α

√
θ2 + δ2

}
(θ2 + δ2)(λ−1)/2σ−ν−2 dθdσ (3.27)

=

∫∫
ρBλ GH(θ |λ, α, β, δ, 0) 2αλKλ(γδ)(δ/γ)λσ−ν−2 dθdσ (3.28)

=

∫ ∞
0

ρBλ 2αλKλ(γδ) (δ/γ)λ σ−ν−2 dσ

= 2ρBλ(α/γ)λ
∫ ∞

0

σ−ν−ψ(ω0 σ
ψ−1)λKλ(γδ) σ

ψ−2dσ

= 2ρBλ(α/γ)λ
∫ ∞

0

(
v

γω0

)(ν+ψ)/(1−ψ)(
v

γ

)λ
Kλ(v)

dv

γω0(1− ψ)

=
2ρBλα

λ

1− ψ
ω
−(1+ν)/(1−ψ)
0 γ−2λ−1−(ν+ψ)/(1−ψ)

∫ ∞
0

vµ
′−1Kλ(v) dv

=
ρBλα

λ

1− ψ
ω
−(1+ν)/(1−ψ)
0 γ−2λ−1−(ν+ψ)/(1−ψ) 2µ

′−1 Γ

(
µ′ − λ

2

)
Γ

(
µ′ + λ

2

)
, (3.29)

where µ′ = λ+ (ν + 1)/(1−ψ). This is an unusual density; it has polynomial tails and is not
differentiable at zero, but is otherwise not too bad.

4 Numerical studies.
num

Here we present some results of a numerical exploration of the solutions derived in the previous
Sections of the paper. We supposed that N firms of a variety of sizes were available for
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investment, ranging from -4 to 12, corresponding to a range of actual sizes from 0.018 to
162754. If we imagine that the starting size of a firm was 1M USD, then this would cover
firms worth anything from about 20,000 USD up to 160bn USD, which is a realistic range.

In all the plots we kept fixed the values ρ = 1, r = 0.05, λ = 0, ω0 = 0.75, and ψ = 0.5.

Case 1. The first plot Figure 1 shows portfolio chosen in Case 1, and the expected growth
rates and expected volatilities14 as they vary with firm size in this example; we see that
the expected growth rate and volatility both have a unique minumum near to zero, and are
monotone away from that minimum.

The portfolio weights are those which would be chosen by a log agent who was presented
with the opportunity to invest in N = 1000 firms in the market, where the firm sizes follow
the distribution given by the density q from (3.29). As would be expected, the agent invests
more in the assets with higher growth rates, but this is not the whole story. The small firms
are also present in the portfolio with positive weight, while mid-cap firms are shorted.

Case 2. We present two plots for Case 2, the first, Figure 2, with σ0 = 0.25, and the second,
Figure 3, with σ0 = 0.65. In both examples we took σ̄ = 0.3 as with the Case 1 examples.

The plots show the portfolio weights for the two examples, and these are quite strikingly
different. In the first, the agent should be short small stocks, and long the larger stocks.
For the second example, the agent should be long the small stocks and short the large ones,
exactly the other way round! Under our modelling assumptions, smaller firms have higher
volatility, but they also give increased diversification benefit, and the first two examples
presented illustrate how these two effects work against each other: for smaller idiosyncratic
volatility, we see that the agent will put more weight on the larger firms, but for the higher
idiosyncratic volatility the diversification benefits prevail, and the agent chooses less of the
larger firms, even going negative in the biggest firms. We should be careful not to read
too much into these results before we have some convincing econometric justification for the
assumed form (3.17) of the asset volatilities, but the point being made here is that given
some reasonable estimates of the asset covariance we can calculate the optimal positions to
be held without having to make any estimates of growth rate, which is problematic if we ever
try to apply the Merton solution in practice. It is intriguing that the portfolio weights we see
can favour the small firms, or the large firms, depending on the values of some of the model
parameters. Thus these two very different investment styles can be accommodated in our
modelling assumptions.

The final plot Figure 4 is inspired by the remarkable plot on page 95 of Fernholz [Fernholz,
2002] of the log of market capitalization against the log of the rank of the firm. The plot
in [Fernholz, 2002] shows how this looks for the US equity market at different points in time,
separated by decades, and the remarkable fact is that the plots are very similar. All the plots
fall away linearly for most of the range of log rank, and then curve down more steeply as the

14In fact, the square root of E[σ2]
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Figure 1: Expected volatilities and growth rates

Fig3
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Figure 2: Case 2, with σ0 = 0.25. σ̄ = 0.3.

Fig0
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Figure 3: Case 2, with σ0 = 0.65. σ̄ = 0.3.

Fig4
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Figure 4: Log size against log rank

Fig2
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ranks get larger. Our Figure 4 is a plot of the theoretical relationship of log size against log
rank implied by the modelling assumptions of this paper, and shows a very striking similarity
to the empirical plots from Fernholz.

5 Conclusions
conclusions

We have in this paper presented and analyzed a simple yet tractable model which tries to ex-
plain why it might be that firm size is a relevant indicator for investment. More remains to be
done in evaluating the effectiveness of this approach, both in regards to econometric evidence,
and in regards to efficacy of the derived investment implications. One important advantage
of this approach is that we are freed from any need or temptation to estimate growth rates.
If we allow ourselves only to use firm sizes (Case 1), we have a recipe for choosing portfolio
proportions which requires the input of only a few parameters (recall that our numerical study
was investing in 1000 assets), though it does make some bold simplifying assumptions about
the dependencies between assets. If we allow ourselves to input some information about asset
covariances (Case 2), then we can also find investment proportions, again without need to
estimate growth rates. The qualitative forms of the solutions found suggest that the model
will adapt well to different situations. Finally, when we examine the relationship implied
between log size and log rank, we find it closely matches the empirical relationship, which
has been shown to be very stable over long periods of time. These observations lead us to
conclude that the model presented here has a number of strong advantages, and deserves to
be explored further.
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A Generalized hyperbolic distributions.
GH

The generalized hyperbolic distribution has density

y 7→ GH(y |λ, α, β, δ, µ)

≡ (γ/δ)λ√
2πKλ(δγ)

exp(β(y − µ))Kλ− 1
2
(α
√
δ2 + (y − µ)2)

(
√
δ2 + (y − µ)2/α)

1
2
−λ

(A.1)

where γ =
√
α2 − β2, and all the parameters λ, α, β, δ, µ are real, with the condition that

|β| ≤ |α|. The MGF is of the form

z 7→ γλeµz

{α2 − (β + z)2}λ/2
Kλ(δ

√
α2 − (β + z)2)

Kλ(δγ)
. (A.2) GHMGF

In this note, we are concerned only with the case where the offset µ is zero, and with λ = 0, 1.
This is because

K 1
2
(y) = K− 1

2
(y) = e−y

√
π

2y
, (A.3) K_half

which fits nicely with the form of the density of the size. We find that for λ = 0, 1 the
generalized hyperbolic density is

GH(y |λ, α, β, δ, 0) =
(γ/δ)λ exp(βy − α

√
y2 + δ2)

2αKλ(γδ)

(√
y2 + δ2

α

)λ−1

. (A.4) GH01

Using the fact that the density integrates to 1, we see that for α > 0, and for |β| < α, writing
γ =

√
α2 − β2, ∫

exp(βy − α
√
y2 + δ2) dy = (2αδ/γ) K1(δγ). (A.5) A5

Differentiating this identity with respect to α and using the Bessel function identity

2K ′ν(z) = −Kν+1(z)−Kν−1(z). (A.6) bfi

gives us∫
exp(βy − α

√
y2 + δ2)

√
y2 + δ2 dy = (2δβ2/γ3) K1(δγ) + (δα/γ)2

[
K0(δγ) +K2(δγ)

]
= δ2

(
K0(δγ) +K2(δγ)(1 +

2β2

γ2
)

)
, (A.7)

where the step to the final form (A.7) utilizes the identity

Kν(z) = Kν+2(z)− 2(ν + 1)

z
Kν+1(z). (A.8) eq:recurrence

17



In what follows, we will often use that for C > 0, µ > λ ≥ 0, we have (with ψ ∈ [0, 1))∫ ∞
0

Kλ(Cs
ψ−1)s−µ−1ds = (1− ψ)−1C

−µ
1−ψ 2

µ
1−ψ−2 Γ

(
µ− λ+ λψ

2(1− ψ)

)
Γ

(
µ+ λ− λψ

2(1− ψ)

)
(A.9) B10

which by a simple substitution follows from the identity valid for all µ > ν ≥ 0:∫ ∞
0

Kλ(t)t
µ−1dt = 2µ−2 Γ

(
µ− λ

2

)
Γ

(
µ+ λ

2

)
; (A.10) bfi2

see equation (8) on page 388 of [Watson, 1995].
We are now in a position to evaluate the normalization constants B0, B1 from (3.24),

making the obvious notational substitutions, A for α, ξ for β, ω0σ
ψ−1 for δ (see (3.23)), and

writing γ =
√
A2 − ξ2.

The case λ = 0. Using (A.5) and (A.9), we obtain

1 = B0

∫ ∞
0

σ−ν
∫ ∞
−∞

exp (ξθ − A
√
θ2 + 2ε/σ2) dθdσ

= 2AB0ω0γ
−1

∫ ∞
0

σ−(ν−ψ)−1K1(γω0σ
ψ−1) dσ

=
AB0

(1− ψ)γ2

(γω0

2

)−(ν−1)/(1−ψ)

Γ

(
ν − 2ψ + 1

2(1− ψ)

)
Γ

(
ν − 1

2(1− ψ)

)
.

The case λ = 1. We set µ̄ = (ν − 2ψ + 1)/(1− ψ) and now use (A.7) and (A.9):

1 = B1

∫ ∞
0

σ−ν
∫ ∞
−∞

exp (ξθ − A
√
θ2 + 2ε/σ2)

√
θ2 + 2ε/σ2 dθdσ

= B1ω
2
0

∫ ∞
0

σ−(ν−2ψ+1)−1

[
K0(γω0σ

ψ−1) +K2(γω0σ
ψ−1)(1 +

2ξ2

γ2
)

]
dσ

=
B1ω

2
0

1− ψ
(γw0)−µ̄2µ̄−2

[
Γ
( µ̄

2

)2

+ (1 +
2ξ2

γ2
)Γ

(
µ̄− 2

2

)
Γ

(
µ̄+ 2

2

)]
=

B1

(1− ψ)γ2

(γω0

2

)−(ν−1)/(1−ψ)

Γ
( µ̄

2

)
Γ

(
µ̄− 2

2

)[
µ̄− 1 + µ̄

ξ2

γ2

]
.

The normalization constants can now be read off.
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