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Abstract

This paper sets up and analyses a continuous-time equilibrium model with firms,
households and a bank. The model allows us to study the inter-relation of production,
consumption, levels of working, interest rates, debt, inflation and wage levels.

1 Introduction.

As the contents of this volume testify, what constitutes systemic risk, and how this may
be modelled and analyzed, is open to many different interpretations. In general terms, we
are concerned with how financial markets affect the real economy; and with the possibility
that many different assets might fall in value at the same time, with consequent loss of
confidence and further losses to follow. One simple approach would be to treat the returns
of a set of assets of interest as correlated time series; but such a view would only address
correlation, without making any statements about causation. At the next level, we could
investigate models where changes in the price of one asset may impact the price of other assets,
establishing a causal route, but not giving much guidance on the form of such causation, nor
on its origins; what is the chicken, what the egg? The key issues for modelling revolve around
how shocks to the system occur, and how the components of the system respond to those
shocks and to the responses of other components. It is the second of these issues which is
the most problematic; a simple-minded imposition of some rules by which the components of
the system respond together is liable to appear ad hoc, and may lead to inconsistencies and
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calibration issues not apparent at the outset. Our attempt to deal with this is to work within
an equilibrium framework, where the principles by which prices form and evolve are at least
well established, even if quite hard to analyse.

What we attempt to do in this paper is to offer as simple a model as possible in which
to try to understand how the financial markets affect the real economy. Such a model has
to contain a financial sector; the real economic sector; and the households who consume the
output of the real economy, supply labour to its workings, who lend to banks which in turn
lend to the real economy. These elements are the minimal possible to begin to address the
question ‘How do financial markets affect the real economy?’ As we shall see, even with such
a sparsely-populated model, the analysis becomes remarkably involved. We were inspired in
this attempt by the paper of Bernanke et al. [1], who study a discrete-time model with many
firms subject to idiosyncratic shocks and to aggregate economy-wide shocks. The financial
sector makes loans to the firms, who accept all the risk by agreeing to outcome-dependent1

repayment terms; these terms are set so that the bank is not exposed to net default risk.
This model is rich and interesting, though its analysis is non-trivial. In the end, Bernanke
et al. end up log-linearising the model and deal with that approximation. In this paper,
we propose to work in a continuous-time setting, where all processes have continuous sample
paths. This brings in methodological and conceptual simplifications, and allows us to make
progress more easily than in a discrete-time model, where random shocks are not infinitesimal.
The preprint of Brunnermeier et al. [2] presents a model of an economy with a financial sector
set in continuous time, differing in so many ways from what we do here that it is hard to
compare the two.

Many important factors have been omitted from this story, such as international trade
and the role of government. Heterogeneity of agents and goods is ignored. Nevertheless, we
believe that the model here may serve some useful purpose in clarifying the linkages between
the different elements in an oversimplified economy. Though there are only three components
to our story, more than a dozen processes have to be determined in equilibrium, so the picture
is much more complex than the initial description might suggest. Analysis takes us some way,
but we find ourselves carrying out simulations at the end in order to understand better how
the model works. This is not a surprise, nor a defeat; models which can be solved in closed
form can only ever be a parody of a caricature of reality, and we have to expect to go numerical
if what we do is ever to become relevant.

In Section 2 we set out the model, and the various dynamic and static relations between
the processes featuring in it. Section 3 gathers together the conclusions of Section 2, and next
in Section 4 we explore what happens in a simple situation with a Cobb-Douglas production
function, and a multiplicatively-separable utility for the households. Numerical results are
reported and commented on in Section 5.

1This we find somewhat unrealistic; a bank loan is only outcome-dependent insofar as default of the firm
may prevent the due repayments being made.
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2 Modelling assumptions

We will present here a model set in continuous time of a banking sector, a productive sector
and a household sector. Each sector is constituted of a continuum of identical agents, so
we will feel free to speak in the singular of the bank, firm, or household. There is a single
consumption good, which can either be consumed or used to produce capital, and there is
money. We shall suppose that the speed of money is infinite, so that neither the household
nor the firm retains a stock of cash; physical cash resides at all times in the bank vault.

All processes will be taken to be continuous and adapted to some filtered probability space
(Ω,F , {Ft}, P ) which supports a Brownian motion W . We shall require some notation for
various different processes in the model:

Ct = consumption rate Lt = rate of working
Kt = firms’ capital Dt = firms’ nominal debt
pt = price level ∆t = households’ bank deposits
wt = wage rate Rt = interest rate on loans
It = investment rate rt = interest rate on deposits
Zt = scaling of net output ℓt = rate of new lending
St = value of equity at = dividend rate
Qt = bank equity xt = bank reserves

Let us now describe the various elements of the model and their interrelations.

The firm. The firm employs labour from the households at rate Lt, for which it pays wtLt;
it operates capital Kt, and from these inputs generates net2 output at rate Ztf(Kt, Lt), where
f is homogeneous of degree one, smooth, increasing in both arguments, and strictly concave.
We therefore can represent f as

f(K,L) = Kh(L/K), (2.1)

where h is increasing and strictly concave; we shall write h̃ for the convex dual function

h̃(y) ≡ sup
x

{h(x) − yx}. (2.2)

The process Z is strictly positive, and scales the output of production; this is the only source
of randomness in the model, and could be motivated by variations in the cost of the raw
materials for production. For concreteness3, we shall assume that the random factor Z in the
output is a geometric Brownian motion:

dZt = Zt(σdWt + µdt). (2.3)

2We imagine that the production of goods may require some goods as input raw materials, but that the
production function accounts for the difference between the quantity produced and the quantity required for
production.

3More general stories could be told here, and much of what follows goes through without this assumption,
but the examples always assume this.
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The firm’s output is split between consumption and investment:

Ztf(Kt, Lt) = Ct + It. (2.4)

Ownership of the firm’s capital Kt is divided between the shareholders and the bank:

ptKt = St +Dt, (2.5)

expressing the monetary value of the capital Kt as the sum of the value of the debt owed to
the bank, and the equity owed to the share holders. We shall define the gross profitability of
the firm as

qt =
[

ptZtf(Kt, Lt) − wtLt − RtDt)
]

/St. (2.6)

This is the gross rate of output of the firm, net of labour costs and interest costs, expressed
as a fraction of the total shareholder capital available; notice that gross profitability is a
dimensionless quantity, not expressed in either goods or money, but simply a number.

The firm’s borrowing is constrained by certain natural inequalities, involving constants
α, κ > 0, b ∈ (0, 1), namely

0 ≤ Dt ≤ b ptKt (2.7)

Dt ≤ αxt (2.8)

Dt ≤ κQt. (2.9)

The first inequality (2.7) expresses a leverage constraint on the firms’ borrowing; they may not
borrow more than some fraction of the current value of their assets. The second inequality
(2.8) expresses the fact that the amount lent out to firms cannot exceed some multiple of
the bank’s reserves, and therefore D/x must be bounded. The third inequality is a capital
adequacy requirement, imposing the constraint on the banks not to lend out more than some
multiple of their equity base.

We shall suppose that the processes D and K are finite-variation processes, but that the
price-level process p has some martingale part. Most of the time the inequality (2.7) will be
strict, and so does not constrain the dynamics, but occasionally it will attain equality, and
at such time there will have to be forced selling in the nature of local time, that is to say,
continuous and finite-variation, but singular with respect to Lebesgue measure.

Default forced sales. We envisage two types of forced sales, one when the leverage constraint
is hit, and the other as defaults hit the firms. If a quantity ε of capital has to be sold, then a
fraction4 γ = γ(q) ∈ (0, 1] will find no buyer and has to be scrapped. In the case of a default,
the fractions γS of the loss borne by the shareholders and γB of the loss borne by the bank
are given by

γSt = min

{

γ(qt),
St

St +Dt

}

, γBt =

(

γ(qt) −
St

St +Dt

)+

, (2.10)

4We allow that the loss rate γ may vary negatively with gross profitability, though in a simple model we
would assume γ constant.

4



as would be expected from the rule that equity takes the first losses. We shall suppose that
firm capital gets into difficulty at rate ψ(qt)Ktdt, where ψ is positive and decreasing. Thus
default losses occur at rate ϕt ≡ ϕ(qt) = γ(qt)ψ(qt) per unit of capital, and these are split
between the firm and the bank as

ϕt = ϕSt + ϕBt ≡ γSt ψ(qt) + γBt ψ(qt). (2.11)

Leverage forced sales. In the case of a sale forced by leverage constraints, the resolution
is different, and needs to be carefully analyzed. We envisage that the firm capital process K
and the debt process D will both be continuous finite-variation, but that the price level p and
the equity S will both have a martingale part. Looking at the inequality (2.7), we expect
that the times when the inequality becomes an equality will have the character of the zero set
of a Brownian motion, so we shall suppose that the leverage forced sales come as a singular

increasing process A.

Accordingly, when the firm has to make an infinitesimal sale dA of capital as a result
of hitting the leverage constraint, the loss γ(q)dA is borne entirely by the shareholders, as
the firm is not in default, it merely has to reduce part of its loans to rein in leverage. The
surviving capital (1−γ(q))dA is transferred from the ownership of the bank to the ownership
of new shareholders, who withdraw money from their deposits to finance the purchase. Thus
we can deduce the evolution of the firm capital:

dKt = (It − δKt)dt− ϕtKtdt− γ(qt)dAt, (2.12)

where δ > 0 is the fixed depreciation rate.
To proceed, we need to assume that πt ≡ 1/pt evolves as a continuous semimartingale5

dπt = πt(σπ dWt + µπ dt− ℵtdAt), (2.13)

and introduce the processes S̃t ≡ πtSt and D̃t ≡ πtDt for the equity and debt expressed in
units of goods, in terms of which the basic identity (2.5) becomes

K = S̃ + D̃. (2.14)

Notice that when a leverage forced sale happens, the total firm capital falls by γ(q)dA, and
the ownership of the remaining (1 − γ(q))dA that was sold passes from the bank, D̃, to the
shareholders, S̃. Hence we deduce the part of the dynamics of S̃ relating to leverage-forced
sales:

dS̃ = dK − dD̃

= −γdA+ (1 − γ)dA+ . . .

= (1 − 2γ)dA+ . . . , (2.15)

where . . . simply denotes various terms in dt and dW that we do not care about for the
moment.

5The coefficients σπ and µπ are processes, not constants.
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A simple thought experiment allows us to determine ℵ. Indeed, the process A is previsible6;
the times when some leverage-forced sales happen can be seen coming, and at those times the
value of equity will be reduced by the losses γdA caused by a forced sale. Why then do we not
find that the households move their money completely out of equity into the bank account to
avoid the equity losses? The answer has to be that the bank account suffers exactly the same

proportional loss. Of course, the cash value of the bank deposits is not changed, so what must
be happening is that the price level rises to compensate for this. Equating the proportional
drop in equity value (expressed as the fall in the quantity of capital divided by the initial
quantity of capital) to the proportional drop in purchasing power of cash, we discover that

γdA

S̃
=
dp

p
+ . . . = ℵ dA. (2.16)

Hence we find that
dp

p
=
γdA

S̃
+ . . .

so we are able to express the dynamics of D as

dDt ≡ d(ptD̃t) = (ℓt − ϕBt ptKt) dt−
ptdAt
St

{

(1 − γt)St − γtDt

}

, (2.17)

where we write γt ≡ γ(qt) for short. The terms in dt here come from the new loans and the
default losses, and the final term is coming from the leverage-forced sales. In this final term,
we understand the first part, (1−γ)p dA, as the cost of the purchase of the additional capital
if there was no change in the price level. However, the price level is also changing, so there is
the correction term γpD dA/S to account for that.

The other part of the story on leverage-forced sales which we have to understand is the
dilution effect. Someone who holds a fraction λ of equity just before a leverage-forced sale
will hold some smaller fraction afterwards, because new stock was issued to raise the money
required for the buyback of bank capital. The fraction of the total stock held will therefore
change to

λ(S̃ − γdA)

S̃ + (1 − 2γ)dA
= λ(1 − (1 − γ)dA/S̃) +O(dA2),

so we find that the fraction λt of stock held by the original stockholders evolves as

dλt = −
λt(1 − γt)

S̃t
dAt. (2.18)

This matters because the fraction of total dividends paid to the original stockholders will be
reduced by dilution, and this has to be taken into account.

Remarks. Notice that by selling (1− γ)dA units of capital, the gap D̃t − bKt is reduced by

{(1 − γ(q)) − bγ(q) }dA = (1 − (1 + b)γ(q))dA, (2.19)

6A will be continuous and adapted.
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and this is only positive if

γ(q) <
1

1 + b
. (2.20)

Thus if this inequality is not satisfied, we can expect that it will be impossible to restore the
leverage inequality (2.7); and the closer γ(q) is to (1 + b)−1, the more selling will be required
to restore the inequality. Notice that if the gross level of profitability falls too far, we may find
γ(q) getting dangerously close to its upper bound, with the risk of substantial forced sales.

We now detail the cashflows faced by the firm. The firm receives in a cashflow ptCt from
the households to pay for consumption, it pays out cashflows wtLt to pay for labour, RtDt in
interest payments to the bank, and at as dividends. The remaining cashflow arises because of
new bank lending to the firm. We interpret this flow ℓt as the purchase by the banks of capital
which the firm is then permitted to operate in return for interest payments. We suppose that
there is no cash accumulation at the firm or at the household, so the net inflows to the firm
equal the net outflows:

wtLt + at +RtDt = ptCt + ℓt. (2.21)

The households. The households supply labour at rate Lt to the firms, purchase consump-
tion goods at rate Ct at prevailing price pt, and wish to maximize the objective

E

∫ ∞

0

e−ρt U(Ct, Lt) dt, (2.22)

where U is smooth, concave, increasing in the first argument7, and satisfies the Inada condition

lim
C↓0

UC(C,L) = ∞, lim
C↑∞

UC(C,L) = 0 ∀L. (2.23)

The households deposit any surplus cash in a deposit account at the bank, which generates
interest at rate rt. They also receive dividends on the bank equity Qt that they hold. We

shall make the simplifying assumption that

the process Q is finite-variation8.

The dividend rate dt to bank equity must be such that the households are indifferent between
bank deposits and bank equity, otherwise they would not be willing to hold both. Thus it
has to be that

Q̇t + dt = rtQt. (2.24)

7We do not assume that U is decreasing with L, though it may be. This is to allow for the modelling
possibility that extremely low values of L would correspond to high unemployment and would therefore not
be desired.

8In the story as we tell it here, there is a single source Z of randomness, but three securities that the
households can invest in: firm equity, bank equity and bank deposits. One of those securities must be
redundant, and the choice we make is simple enough to work with.

7



The households’ deposits change with the saving of their surplus income, and with any with-
drawals needed to purchase capital at times when the firm’s borrowing hits its leverage bound.

d∆t = (wtLt + at + rt∆t + dt − ptCt)dt−
ptdAt
St

{

(1 − γt)St − γtDt

}

= (wtLt + at + rt(∆t +Qt) − Q̇t − ptCt)dt−
pt dAt
St

{

St − γtptKt

}

. (2.25)

The bank. The bank takes deposits and makes loans. The balance-sheet identity

∆t = xt +Dt (2.26)

equates the bank’s liabilities to depositors to its assets (in the form of reserves plus loans.)
When default losses occur, at rate ϕtKt, these are split proportionally between the bank and
the equity of the firm; the face value D of the debt falls by ϕBt ptKt and the banks pay the
same amount out of equity into the reserves x so as to maintain the balance-sheet identity
(2.26). Additionally, when the leverage constraint is hit, the face value of debt is reduced due
to shareholder purchase of additional capital. Thus we have

dDt = (ℓt − ϕBt ptKt)dt−
pt dAt
St

{

St − γtptKt

}

. (2.27)

Bank equity receives interest payments at rate RtDt on the loans, pays out dividends at rate
dt to their shareholders, pays out interest to depositors at rate rt∆t, and compensates the
depositors’ reserves for default losses on the loan book. Thus in total we find the evolution
equation for bank equity Q:

Q̇t = RtDt − rt∆t − dt − ϕBt ptKt, (2.28)

from which (using (2.24)) we draw the simple conclusion that

RtDt = rt(∆t +Qt) + ϕBt ptKt. (2.29)

The evolution for the bank reserves x is

dxt = d∆t − dDt = (rt(∆t +Qt) − Q̇t − RtDt + ϕBt ptKt)dt = −Q̇tdt (2.30)

using (2.21) and (2.25) to rework the first expression. This accords with what would be
expected; there is no cash anywhere in the system except in the reserves x and the bank
equity Q, and the sum of these two must be constant:

x+Q = M, (2.31)

where M denotes the total cash in the system. It will turn out that the notional split of the
bank cash M is indeterminate (because deposits and bank equity both deliver an identical
return). In view of this, we may nominate to split M in whatever way is convenient, and
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by inspection of (2.8) and (2.9) we see that we make the bound on D implied by these two
inequalities as generous as possible if we take x ∝ κ, Q ∝ α, allowing us to replace the two
bounds (2.8) and (2.9) by the one bound

Dt ≤
ακM

α + κ
. (2.32)

To summarize the cashflow rates between the four entities in the story, we have the following
table:

From/To Household Firm Bank reserves Bank equity

Household pt dAt

St

{

St − γtptKt

}

+ ptCtdt d∆t

Firm (at + wtLt)dt pt dAt

St

{

St − γtptKt

}

RtDt dt

Bank reserves ℓt dt

Bank equity (rt∆t + dt) dt ϕBt ptKtdt

Optimality conditions. Further relations follow from optimality considerations. We have:

θtUC + UL = 0, (2.33)

ZtfL = θt, (2.34)

where we have introduced the notation

θt ≡
wt
pt

≡ wtπt (2.35)

for the real wage rate. The first equation comes by considering a marginal increase in working
being used to pay for a marginal increase in consumption; at optimality, no such change would
improve the objective of the agent. The second comes from considering the marginal increase
in the value of output which the firm would achieve by employing more labour.

We shall assume that

the nominal wage rate w is finite-variation, (2.36)

and that
the labour deployed in production, L, is finite-variation, (2.37)

These assumptions result in a relatively stable labour market, justified by the casual obser-
vation that the prices of goods in the shops change far more frequently than the wages9 an
individual earns, or that individual’s employment status. These assumptions have important
consequences: from (2.35) we learn that the volatility of θ equals the volatility of π, since w
is assumed to be finite-variation; and from (2.34) we likewise deduce that the volatility of θ
equals the volatility of Z, which by assumption is the constant σ.

Further consequences of optimality can be deduced by considering the marginal expected
changes which occur on switching small quantities of capital or cash between possible uses.

9There are echoes here of Keynes’s [3] assertion in Chapter 2 that labour stipulates a money wage, rather
than a real wage.
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Considering the switching of household consumption into bank deposits; and a small increase
in firm capital funded by borrowing, respectively, we may argue the following consequences:

(i) One property can be deduced from the assumption that the firm is a simple expectation-
maximizer. The firm operates capital of two types, bank capital, and shareholder capital.
The firm incurs costs at rate RtDt−ϕ

B
t ptKt on the bank capital10, and at rate at+ϕ

S
t ptKt

on equity; these costs, expressed as a fraction of the capital involved must be equal,
otherwise the firm would switch immediately to all of one sort of capital or the other.
This leads to the relation

at + ϕSt ptKt

St
≥
RtDt − ϕBt ptKt

Dt

, (2.38)

with equality whenever the inequalities (2.7), (2.32) are strict. Of course, the inequality
(2.38) does not apply when D = 0, since in that situation we are not able to reduce
bank funding. The corresponding inequality when D = 0 would be

at + ϕSt ptKt

St
≤ Rt (2.39)

(ii) If the consumption now is transferred into the bank account, we learn that

exp
{

−ρt+

∫ t

0

rs ds
}

UC(Ct, Lt)/pt is a martingale. (2.40)

This we see by considering a situation where the households reduce their consumption
in (t, t + dt) by ε, place the ptε dt thus saved into the bank account, and at later time

T withdraw the value ptε dt exp(
∫ T

t
rs ds) and use it to consume some more during

(T, T + dt). At optimality, this trade cannot change the expectation of the objective,
from which the condition (2.40) follows. As a consequence, we learn that the household’s
state-price density process is

ζt ≡ e−ρtUC(Ct, Lt)/pt. (2.41)

(iii) We now consider the situation of the original shareholders’ stake in the firm and how it
is valued. At time t, the fraction of the firm capital owned by the original shareholders
(who have not input any further capital into the firm) is λt, where the evolution of λ is
given by (2.18). This stake entitles them to dividend flow λsasds at all later times s, so
we deduce that

ζtλtSt +

∫ t

0

ζsλsas ds is a martingale; (2.42)

the current value of the stock has to be the net present value of all future payouts.

10The sign of the term ϕB
t ptKt is correct; the default losses suffered by the bank are a writedown of the

firm’s debt, therefore a credit for the firm.
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(iv) We propose a shadow firm story, where the household foregoes a small amount ε of
consumption for a period of length dt at time t, thereby saving goods εdt which is
invested into productive capital. We shall suppose that the time interval (t, t + dt)
contains no point of increase of A, thereby excluding a Lebesgue-null set of times. The
capital saved and invested into a shadow firm has decayed by time u > t to

∆ku ≡ εdt exp

(

−

∫ u

t

(δ + γ(qt)ψ(q̄s)) ds

)

,

where q̄s is the profitability of the shadow firm at time s. Labour is employed at the
going wage rate so as to maximize the output11, so that at time u we find the maximized
output to be

Zu h̃(θu/Zu) ∆ku = εdt Zu h̃(θu/Zu) exp

(

−

∫ u

t

(δ + γ(qs)ψ(q̄s)) ds

)

, (2.43)

and in the process we learn that

q̄s = Zsh̃(θs/Zs). (2.44)

This additional output generates additional consumption and so utility; at time t, the
expected increase in the future objective must exactly balance the loss of objective due
to the sacrifice of consumption εdt now, resulting in

εdt UC(Ct, Lt) = εdtEt

[
∫ ∞

t

e−
R

u

t
(ρ+δ+γψ(q̄s)) ds UC(Cu, Lu)Zuh̃(θu/Zu) du

]

. (2.45)

For notational convenience, we write

ψ̄t ≡ δ + γ(qt)ψ(q̄t) = δ + γ(qt)ψ(Zth̃(θt/Zt)), Ψt ≡

∫ t

0

ψ̄s ds. (2.46)

From (2.45) we conclude that

d

(

e−ρt−ΨtUC(Ct, Lt) +

∫ t

0

e−ρu−Ψu UC(Cu, Lu)Zuh̃(θu/Zu) du

)

(2.47)

is the differential of a martingale, at least off the set of times of increase of A. We
make no statement about what happens on the (null) set of times where A increases;
the objective of the households does not in any case care about what happens on a
Lebesgue-null set of times, so it cannot matter.

The argument given assumes that it is marginally viable for households to set up a shadow
firm from their own resources in this way. This is not to say that there is no point in having
a banking sector, rather that in equilibrium there is no point in having any more or less of
the banking sector.

11The optimization problem to be solved is maxL{pZf(K, L) − wL} = maxL pZK{h(L/K) −
(θ/Z)(L/K)} = pZK h̃(θ/Z).
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Conditions from the martingales. We have just deduced from optimality considerations
that there are three martingales in this story, (2.40), (2.42), and (2.47). We exploit this
information by working out what the drifts of these three processes are, and then setting
them equal to zero. Since the process UC(Ct, Lt) appears in all the martingales, it will be
helpful to have a shorter notation for it, so we shall write

dUC = UC ( σU dW + µU dt+
γdA

S̃
), (2.48)

and later make the processes σU and µU more explicit. The martingales are analyzed as
follows.

(i) From (2.40), by taking an Itô expansion and setting the drift equal to zero, we learn
that

r = ρ− µU − µπ − σUσπ. (2.49)

(ii) From (2.47) we learn that

µU = ρ+ δ + γ(q)ψ(q̄) − q̄, (2.50)

where we recall that q̄s = Zsh̃(θs/Zs).

(iii) The final martingale (2.42) needs more work. Using (2.41) and (2.5), we express the
martingale as

Nt = λte
−ρtUC(Ct, Lt)(Kt − D̃t) +

∫ t

0

λue
−ρuUC(Cu, Lu)πuau du (2.51)

where D̃t ≡ πtDt evolves according to

dD̃ = σπD̃dW + (πℓ− ϕBK + µπD̃) dt− (1 − γ)dA. (2.52)

Expanding the expression (2.51) forN with Itô’s formula, the terms in dA cancel, leaving

dN

λte−ρtUC

.
=

[

(I− (δ+ϕ)K)− (πℓ−ϕBK+µπD̃)+(K− D̃)(µU −ρ)−σUσπD̃+πa
]

dt

where
.
= signifies that the two sides differ by a (local) martingale. Since the drift term

must vanish, we are able to develop this as

0 = I − (δ + ϕ)K − (πℓ− ϕBK + µπD̃) + (K − D̃)(µU − ρ) − σUσπD̃ + πa

= I − δK + D̃(ρ− µU − µπ − σUσπ) +K(µU − ρ− ϕS) + π(a− ℓ) (2.53)

= I − δK + rD̃ +K(µU − ρ− ϕS) + (C − θL− RD̃) (2.54)

= Zf − θL+K(µU − ρ− δ − ϕS) + D̃(r −R) (2.55)

= K(Zh̃(θ/Z) + µU − ρ− δ − ϕS) + D̃(r − R) (2.56)

= K
{

Zh̃(θ/Z) + γ(q)ψ(q̄) − q̄ − ϕS
}

+ D̃(r − R) (2.57)

= K
{

γ(q)ψ(q̄) − ϕS
}

+ D̃(r − R), (2.58)
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where we used (2.11) to arrive at (2.53); (2.21) and (2.49) to arrive at (2.54); (2.4) to
arrive at (2.55); the optimality of θ to arrive at (2.56); (2.50) for (2.57); and finally the
definition (2.44) of q̄ to arrive at (2.58).

The conclusion therefore is

Kγ(q)ψ(q̄) + rD̃ = KϕS +RD̃, (2.59)

which bears a neat interpretation: the left-hand side is the rate at which the shadow
firm12 runs up costs of defaults and (lost deposit) interest, the right-hand side is the
rate at which the actual firm runs up costs of defaults and (actual) interest, and the
result (2.59) says that these two are equal. Bearing in mind the assumption that in
equilibrium there was no barrier to market entry for shadow firms, this result makes
perfect sense.

3 Summary.

We shall gather here all the equations governing the economy. To begin with, let us notice
that because of (2.34), and the relation q̄ = Zh̃(θ/Z), we have from the definition (2.6) that

q =

{

q̄ −
RD

D + S

}

pK

S
. (3.1)

We can rearrange this more informatively to read

q̄ = q
S

S +D
+R

D

S +D
. (3.2)

This tells us that the profitability q̄ of the shadow firm, which has no loan capital and therefore
pays no interest, is a convex combination of the profitability of the firm, and the rate of return
on bank loans. This makes good sense13; if R > q̄, then the cost of loans is too high and it
would be better for the firm not to take any, while if q̄ > q it would again be better for the
households to take all their capital out of the firm and start their own shadow enterprise.

Now we summarize the equations governing the economy. The state variables of the
economy will be taken to be14 (Z,K,D), and we will work also with auxiliary variables L and
π ≡ 1/p, supposed to satisfy15

dL = L(µLdt+ ηLdA) (3.3)

12... funded by borrowing in the same proportions to the actual firm ...
13We expect that q > R in any case, otherwise the firm would do better to pay back its loans rather than

produce.
14In view of the discussion at (2.32), we see that x and Q are held at fixed fractions of the constant money

supply M , and therefore ∆ = x + D is determined once D is known. Therefore there is no need to include ∆
in the state variables; it can be deduced.

15Recall that L is supposed to be finite variation.
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and (2.13) respectively. From (2.34), (2.33), (2.4), (2.5), (2.44), (3.2), (2.10) and (2.11),
(2.29), (2.38), and (2.21) we obtain respectively:

ZfL(K,L) = θ (3.4)

0 = θUC(C,L) + UL(C,L) (3.5)

Zf = C + I (3.6)

pK = S +D (3.7)

q =
pZf − wL− RD

S
(3.8)

q̄ = Zh̃(θ/Z) (3.9)

q̄ = q
S

S +D
+R

D

S +D
. (3.10)

ϕB =

(

γ(qt) −
St

St +Dt

)+

ψ(qt) (3.11)

RD = r(D +M) + ϕBpK (3.12)

a ≥ RS − ( SϕB/D + ϕS ) pK (3.13)

pC + l = a+ wL+RD (3.14)

(where equality obtains in (3.13) when D is unconstrained), the relation ϕS = γψ(q) − ϕB,
along with the dynamic equations

dK = (I − (δ + ϕ)K)dt− γdA (3.15)

dD = (ℓ− ϕBpK)dt−
p dA

S
(S − γpK), (3.16)

the martingales (2.40), (2.47), (2.42), and the inequalities (2.7), (2.8), (2.9).
Intriguingly, the use of (3.12) in (2.59) gives us the surprisingly compact equation

pγ(q)K(ψ(q̄) − ψ(q)) = rM. (3.17)

Notice that since q̄ < q and ψ is decreasing, the left-hand side is indeed positive. The equation
(3.17) has the simple interpretation that rM + pγ(q)Kψ(q) is the net rate at which the firm
pays out to the bank and to default costs, and that this should equal the rate of default costs
if the fully-funded shadow firm was set up instead.

Let us now detail the route through these equations, bearing in mind that we have state
variables (Z,K,D, L, π) at any time.

• We use (3.4) to find θ; (3.5) to find C; (3.6) to find I; (3.7) to find S; (3.9) to find q̄;

• The implicit equation for q is solved by choosing a value for q; using (3.17) to deduce r;
(3.10) to deduce R; (3.11) to find ϕB; and (3.12) to obtain another value for R, which
has to agree with the earlier value, and this is done by adjusting the choice of q;

• We use (3.13) and (3.14) to deduce a and ℓ.

14



The one last thing to be done is to determine what may happen when the debt has reached
its maximal allowed value (2.32), at which point all we are able to conclude is that (3.13) is
an inequality. This inequality arises by comparing the cost of financing by equity with the
cost of financing by bank borrowing. If the inequality is strict, then the demand for bank
borrowing would be high; we shall suppose that the rate ℓ of new lending is as high as possible

while keeping within the bound (2.32), that is, that ℓ = ϕBpK when (2.32) is an equality.
This will mean that we now go to (3.14) to determine what the rate a of dividend payments
should be. If we ever reached a time when D = 0, then the inequality (3.13) is replaced by
the inequality (2.39). If this were to happen, then there is no point in the banks maintaining
the lending rate R at any level higher than (a + ϕSpK)/S, since there are no loans anyway,
so we will assume that the inequality (2.39) is an equality when D = 0.

This explains how the current values of all variables are to be found. Deriving the dynam-
ical equations is in principle possible from this, but is rather cumbersome at a general level,
so we shall study those questions in a simple example.

4 Examples.

We propose that the production function takes the standard (homogeneous of degree 1) form

f(K,L) = Kh(L/K) (4.1)

for some positive increasing concave h. We shall try to deduce from the preceding equations
and relations as much as we can about the unknowns, supposing that we know Z,K,D, L
and π.

The first relation to work on is (3.4), which is stated as

Zh′(L/K) = θ, (4.2)

giving θ in terms of the known processes. In view of the form of this, it will be helpful to
introduce the process y ≡ L/K with evolution

dy = y
{

µLdt+ ηLdA− (I/K − δ − ϕ)dt+ γdA/K
}

(4.3)

≡ y(µy dt+ ηy dA). (4.4)

In terms of y, we have that θ = Zh′(y) and the evolution of θ is

dθ

θ
=
dZ

Z
+
h′′(y)dy

h′(y)
= σdW + µdt+

yh′′

h′
(µydt+ ηydA). (4.5)

The second equation (3.5) allows us to find C as a function of θ and L, and from that we may
find UC as a function of θ and L. We shall suppose that we have

UC = F (θ, L) (4.6)
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for some function F which will need to be made explicit in any particular example. However,
assuming that we have F , we may develop

dUC
UC

=
Fθ dθ + 1

2
Fθθ dθdθ + FL dL

F

=
θFθ
F

{

σdW + µdt+
yh′′

h′
(µydt+ ηydA)

}

+
θ2σ2Fθθ

2F
dt+

+
LFL
F

(µL dt+ ηL dA)

=
σθFθ
F

dW +

{

µθFθ
F

+
θ2σ2Fθθ

2F
+
LFL
F

µL +
θFθyh

′′

Fh′
µy

}

dt+

+

{

θFθyh
′′

Fh′
ηy +

LFL
F

ηL

}

dA.

Using the fact that we know (2.48) the component of dUC involving dA, we are able to compare
coefficients to learn that

σU =
σθFθ
F

(4.7)

µU =
µθFθ
F

+
θ2σ2Fθθ

2F
+
LFL
F

µL +
θFθyh

′′

Fh′
µy (4.8)

{

θFθyh
′′

Fh′
+
LFL
F

}

ηL = γ

{

1

S̃
−
θFθyh

′′

KFh′

}

. (4.9)

Using (2.50) and (4.4) gives µL.

4.1 Possible choices for h and U .

To apply the preceding analysis, we need to make choices for h, and for U , in such a way that
the function F can be obtained in a reasonably simple form. Here are a few possibilities for
U .

1. We could use

U(C,L) = −
C−ε

(L∗ − L)ν
(4.10)

where ε, ν > 0. Routine calculation leads to the conclusion

UC = F (θ, L) = (ε−ε
′

νε
′

)(L∗ − L)−ν−ε
′

(4.11)

where ε′ ≡ 1 + ε.

2. Another product form choice for U would be to take

U(C,L) = −C−ε(A+ Lν), (4.12)

where A, ε > 0 and ν > 1. In this case we find

UC = F (θ, L) = ν(ν/ε)ε θ−ε−1(A+ Lν)−ε L(1+ε)(ν−1) (4.13)
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All the examples we studied used the Cobb-Douglas choice

h(y) = y1−β (4.14)

for some β ∈ (0, 1) gives yh′′/h′ = −β.

4.2 Simulation.

The simulation story is largely straightforward, but a little care is needed over the treatment
of the leverage forced sales. If we take a time step dt for the discretization, and we generate a
Gaussian increment dW ∼ N(0, dt) for the Brownian driver of Z, then in the absence of any
leverage forced sales we see the updating

Z 7→ Z ′ ≡ Z exp( σdW + (µ− 1

2
σ2)dt )

K 7→ K ′ ≡ K + ( I − δK − ϕ(q)K ) dt

D 7→ D′ ≡ D + ( ℓ− ϕBpK ) dt

π 7→ π′ ≡ π exp( σπdW + (µπ − 1

2
σ2
π)dt )

L 7→ L exp(µLdt)

If π′D′/K ′ ≤ b, then there is no violation of the leverage constraint (2.7), and nothing more
needs to be done. However, if this is not the case then there is need for some forced sales of
magnitude dA, which (in view of (2.17), (2.12), (2.13)) gives us

π′D′

K ′
7→

π′D′

K ′

exp(−γdA/S̃)(1 − {(1 − γ)S − γD}pdA/SD)

1 − γdA/K ′
. (4.15)

We also have that dA ≤ K ′, since we cannot sell more that the total capital; this leaves us
with a numerical search for the value of dA.

5 Numerical results.

We now present some of the numerical results we have obtained by simulating evolutions of
the economy, and comment on the most interesting features of our plots. We do not attempt
to give an exhaustive list of relationships holding between variables in our economies; indeed,
we shall be presenting 15 plots characterizing each run of an economy and in theory we could
tell a story about a relationship holding between any pair of the plots. We will therefore
concentrate on the features that we find most interesting, and will comment on those instead.

We shall refer to the unit of time as one year and, as we will see, a lot of our resulting
variables make sense viewed on this time scale. Nevertheless, it is worth mentioning that we
are not attempting any parameter estimation; in particular, we refer to units of capital or
labour. Estimating these values and making them sensible when used as parameters in the
utility function is a separate question which we are not attempting to answer in this paper.
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In what follows, we shall take the default function ψ(q) to be

ψ(q) = λψ

(√

q2 + ψ2
0/λ

2
ψ − q

)

, (5.1)

where ψ0, λψ > 0.

Steady-state economy. We shall begin with considering a steady- state economy where
the productivity shocks process Zt is an exponential of an OU process. The driving process
is then ergodic, and we obtain a steady-state solution. As we will see, even in this simple set
up there are many interesting features visible.

We use Cobb-Douglas production function (4.14) and a log-separable utility function
(4.12). The results of a sample simulation are shown on Figure 1.

Looking at the behaviour of capital, we see that the economy is experiencing moderate
growth for about 1.5 years, subsequently seeing a contraction for a year, followed by a period
of a rapid growth and an eventual slowdown. This is remarkably similar to what we see while
observing real life economies!

Let us analyse the period when the economy is troubled around year 2. At first, the spike
in the household’s consumption there seems counterintuitive, noting that both labour and
wages fall. A careful look at the graphs reveals what happened. The period between year 1
and year 2 shows high productivity Z, accompanied by high real wages and low commodity
prices. This of course leads households to consume more, which we see by a buildup in
consumption in that period. The thirst for consumption leads to withdrawal of savings from
the banks to finance the purchase of goods, which in turn leads to banks having to decrease
lending and lower the interest rates. This higher consumption reduces investment, leading to
falling capital values and recession which we see dipping around year 2.5.

It is also interesting to note that the the fall in capital prices leads to firms being pushed
to leverage forced sales, which we see by looking at the dA term on the graphs. This plays a
role of a financial accelerator in our setting, similar to ideas found in Bernake et al. [1].

The recession brings an eventual drop in consumption, resulting in higher investment, and
the economy goes back to a growth path. We see a period of fast growth in years 3− 5. This
coincides with higher employment and an extremely rapid buildup of debt, even in a growing
interest rates environment. Companies are so keen on taking on debt in this bull market that
they quickly leverage up to their limit, which we see by noting the high leverage ratio in years
4 − 9, causing periodical leverage forced sales.

When debt reaches its maximal regulated value 10, the nominal economy goes into a
steady state. Prices and nominal wages, as well as interest rates, are oscillating around and
do not move much.

The real economy, however, does not stay put. Increasing productivity Zt, together with a
buildup of capital and real wages, yet again lead to consumption gradually rising. Yet again,
around year 8, higher consumption is choking off investment, capital levels fall, as does firm
debt and employment; a new recession begins. . .

Effects of regulation. Having described our basic economy, we now proceed to investigate
effects of regulation. We keep the exogenous path of process Zt the same as in Figure 1, but
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change other input parameters in the model. This allows us to conduct a ‘what if’ study on
the economy from Figure 1. We shall keep fixed axis scalings for all the scenarios we consider
for easier comparison.

Firm’s leverage. We consider a situation where firms are more tightly regulated, and reflect
that in parameter b = 0.3, see Figure 2. We keep all other parameters fixed as before.

Let us now compare Figures 1 and 2. Firstly notice that tighter regulation results in much
increased leverage forced sales activity, as would be expected. This in turn means that more
capital in the economy gets scrapped, and hence we see that the total level of capital in the
constrained economy is generally lower.

The effects of stricter regulation are particularly visible in years 3 − 8 when the base
economy experiences rapid expansion. Firms want to leverage up as much as they can, but
they soon fall into a trap of leverage-forced sales. The regulation is so tight that the debt
never reaches its maximal allowed value D = 10. Thus, a lot of capital is dissipated which
makes the whole economy worse off. Output and profitability are lower; and hence so is
consumption. We also see an increase in prices, labour and interest rates, and a decrease in
real wages.

Perhaps the only positive outcome is that labour comes out around 0 − 1% higher than
in the less-regulated economy from Figure 1. This is because the drop in real wages lets the
firms employ more people in an attempt to keep the productivity up.

Money supply. We have thus seen that over-regulating firms in the base economy from
Figure 1 had generally negative effects. Let us now consider a scenario when banks are
more tightly controlled through squeezing the monetary supply. An economy with M = 5 is
presented on Figure 3.

The first striking feature of the economy with tighter money supply is that we see fewer
leverage-forced sales, especially in years 3 − 8 when the economy is growing. What happens
is that tighter regulation on banks caps the firm’s borrowing; the firms would like to borrow
more, but the banks cannot lend it. This leads to firms being sheltered from leverage sales
and hence the net capital actually grows faster than in the base economy from Figure 1.

The restrictions to debt are decreasing firm’s profit rates, and also default forced sales
ϕ(qt), yet the economy is doing better; who benefits then? The households do. We see that
through increased consumption rates, as well as higher real wages. The households also have
to work less and receive higher interest on their savings.

We therefore conclude that, in our simple economy, it is far more efficient to put tighter
restrictions on banks than on the firms. This way the productive firms do not fall into a
leverage-forced sales trap; they simply borrow slightly less when the times are good.

Having described various relationships holding in the relatively steady economy seen so
far, we proceed to consider economies where the paths of Zt oscillate more. As we will see,
this leads to other interesting effects.

Business cycles. Let us now consider paths of the shock process Zt where the departures
from the mean level are more persistent than in the case of an exponentiated OU process. We
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want to investigate how the economy responds to persistent series of shocks over a prolonged
period of time. What we will see is not just short-term price fluctuations, but effects that
impact the whole economy: business cycles.

We take the time horizon of 30 years and consider paths of Z varying around the mean
productivity by 5% in the economy on Figure 4 and 10% on Figure 5. Let us analyze each
figure in turn.

On Figure 4, it is very clear that fluctuations in Zt filter through the whole economy, caus-
ing cycles. Take, for example, the cycle peaking between years 4− 5, and ending around year
9. During the recession period we see effects typically associated with contracting economy:
fall in consumption, investment, real wages, prices and profitability, as unemployment rises.
This of course is in line with our expectations. There are a couple of interesting points to
note though.

The beginning of virtually every recession starts with the forced sales. This happens when
the economy peaked, output begins to fall, prices begin to fall, which in turn makes the
leverage constraints bite. Forced sales lead to losses of capital, which in turn magnifies the
effects of the coming recession and plays a role of a financial accelerator.

Amplification of the capital losses is not the only place where our model behaves in a non-
linear way. The consumption path goes on excursions of around 10% from its mean value,
twice the amount that shocks path Z does. Labour is more stable, varying by about 1%,
which is in line with our assumption of stable labour markets.

The timing of the fluctuations is also of interest. Looking at the first recession, labour,
nominal wages, debt and price level all bottom out at year 5, only about a year after the
peak of capital, but consumption, capital and profitability keep falling for another 2.5 years,
investment and real wages turn around a little earlier.

Finally, it is worth mentioning the effects on interest rates. We do not expect huge
variations in interest rates due to a fixed money supply and a cap on the debt. However, we
see that the responses of the rates are sensible; they fall when debt is falling.

Similar trends can be observed in Figure 5. One interesting feature is here is that our
coefficient of severity of forced sales γ = 0.5 is quite high. This is shows up in the economy
when the leverage constraint gets hit: we see a huge drop in capital in years 4− 5. However,
the economy subsequently grows back to its original level, and the recession around year 23
is much less severe than the first recession, largely because the price level at that time was a
lot higher, so the pressure of the leverage constraint was less intense.

One can in theory pick up the Scilab code and tell an interesting story about any simulation
run; therefore the list of features of the model is by no means exhaustive. We find it rather
remarkable that a simple model we presented leads to so many different possible scenarios;
and, even more so, that the behaviour exhibited is very much in line with what actually
happens.
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Conclusions.

This paper has presented a complete continuous-time model of a simplified but plausible
single-nation economy. By setting the model in continuous time, much of the analysis becomes
substantially easier than it would be in discrete time; and we escape from the stylized but
implausible stories of a sequence of trading, production then consumption which has to happen
in each time period. Closed-form solution of the economy is impossible, but from equilibrium
considerations we can derive sufficient relations to close the model, and this allows us to
simulate an evolution of the economy.

The model has a five-dimensional state-vector, consisting of the current level of produc-
tivity shocks, firm capital, debt, labour employed, and the price level. These state variables
determine via the derived equilibrium relations: real wages, consumption, investment, gross
profitability, interest rates for deposits and lending, default loss rates, and the dividend rate
on firm equity. Numerical examples display credible features, and offer the prospect of solving
for the entire economy without resorting to various linear approximations. We believe that
this is important, because we cannot expect linear approximations to work reliably when the
economy is in a state which is substantially different from its recent history, as it is now.
Much remains to be done: numerous parameter choices need to be made to set up the model,
and it will be challenging in practice to do this well; a rôle for government, government debt
and taxation needs to be introduced; reaching further, it would be good to extend the story
to cover several nations, and perhaps also to allow for different types of good, and different
types of labour. However, it is evident that any such model will be far too complex to be
solved by paper and pencil; we will have to proceed numerically in the end, so our view is
that we may as well therefore go numerical from the beginning. We also believe that in order
to understand systemic risk it will be necessary to model the system; modelling only some
parts of it will only lead to partial understanding. This paper is a step in that direction.
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Figure 1: Steady-state economy - base case. Here we take K0 = 15, L0 = 0.9, D0 = 4,
p0 = 1, Z0 = 5,ǫ = 2, ν = 10, A = 1.05, b = 0.35, κ = 2, α = 2, M = 10, ρ = 0.05, δ = 0.2,
γ = 0.3, σ = 0.2, λψ = 0.7, ψ0 = 0.4, β = 0.3.
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Figure 2: Steady-state economy - firm’s regulation. Here we take K0 = 15, L0 = 0.9,
D0 = 4, p0 = 1, Z0 = 5,ǫ = 2, ν = 10, A = 1.05, b = 0.30, κ = 2, α = 2, M = 10, ρ = 0.05,
δ = 0.2, γ = 0.3, σ = 0.2, λψ = 0.7, ψ0 = 0.4, β = 0.3.
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Figure 3: Steady-state economy - lower monetary supply. Here we take K0 = 15,
L0 = 0.9, D0 = 4, p0 = 1, Z0 = 5,ǫ = 2, ν = 10, A = 1.05, b = 0.35, κ = 2, α = 2, M = 5,
ρ = 0.05, δ = 0.2, γ = 0.3, σ = 0.2, λψ = 0.7, ψ0 = 0.4, β = 0.3.
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Figure 4: Business cycle. Example 1. Here we take utility (4.10), K0 = 90, L0 = 0.85,
D0 = 5, p0 = 1, Z0 = 1, L∗ = 1, ǫ = 1.5, ν = 15, A = 1, b = 0.125, κ = 2, α = 2, M = 10,
ρ = 0.06, δ = 0.375, γ = 0.1, σ = 0.2, λψ = 1, ψ0 = 0.4, β = 0.8.
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Figure 5: Business cycle. Example 2. Here we take utility (4.10), K0 = 85, L0 = 0.8,
D0 = 5, p0 = 1, Z0 = 1, L∗ = 1, ǫ = 1.5, ν = 15, A = 1, b = 0.1, κ = 2, α = 2, M = 10,
ρ = 0.06, δ = 0.3, γ = 0.5, σ = 0.25, λψ = 1, ψ0 = 0.4, β = 0.8.
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