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A DIFFERENTIAL EQUATION IN WIENER-HOPF THEORY

by

L.C.G. Rogers and David Williams

This is a heuristic introduction to some progress with certain
calculations in Wiener-Hopf theory. Further details will be presented

later.

PART 1. THE CASE WHEN THERE IS ONLY ONE BOUNDARY POINT

1. Let B = {B(t):t=0} (also written {13t :4t20}) be a Brownian motion
on R. The symbol P denotes Pl- IBO =r], and E_ denotes P_
expectation. Let V: R+-R, with V>0 on (0, and V<0 on (-=,0).

For t=0, define:

t
+ —
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¢y JOV( Jds, T, influ: ¢ t}, T, influ: -¢ },
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Y, = B('rt) e [0,=), Yt = B(Tt) € (~=,0] .
If BO =x<0, then T; is the half-winding time about the origin.for the -
joint process {(¢t,Bt)} . Our primary concern is to calculate half-winding

hitting probabilities:

e,y = ]Px[Y; edyl/dy, T (x,¥) = my[ya e dx1/dx ,

where x<0, y>0.
Back in 1963, McKean ([ 3 ]) solved this problem for the case wheﬁ'
Vir) = r, ¥r e R, The joint process (¢t’Bt) , the phase picture for McKean's

resonator, is then Gaussian (as well as Markov); and McKean exploits this -




for Y+ (or Y_) then just counts the number of visits.] Let

+ - -
Jydy‘(resp., dex) be the Lévy measure describing jumps made from O by
YryT) . Define

+ _d £ + _ +
(3.1) m (t) = dtiEOEL (tHyl, br(t) .Po[Y (t) e drlsdr .

Then we have the Fokker-Planck equation:

+
3b_ (t) - 2
r 1 3 -1 + + +
e = 53— LIV I b ()] + m7 g,
ar
where Vr = V{r) . For the better formulation of the Fokker-Planck equation,

introduce the Radon-Nikodym derivatives:

Sy = bt fv_I 2= 5]
Bt =b_ctaslv l, A =3 /v,
Then *
3B_(t) 2
r + o+ % + _1,, -1
(3.2) T 9r8r(t) +m (A, 9r =5 EVri o2 .

If H=inf{s:B_=0}, and h_(t)dt = :mrtiﬁ(n)le:dt], then

it is clear that for x<0, y>0,

ntx,y) = Jmh (t)b (t)dt ,
0o X ¥
so that
(3.3) T,y = e,V ,
where
(3.4) p(x,y) = Imnx(t)s;(t)dt.

0
The symmetry propefties discovered in [ 2] (see Note below for a correction
to [ 2]) make it clear that
(3.5) I (x,y) = V&xo(x,y),

and that we have the following dual expression for p :

00

(3.6) p(x,y) = J s;(t)hy(t)dt.

o




where A>0, Recall that

o+

t
bud . . _ +
¢t = JOV(BS)ds, Ty = inf{u: i¢u>>t}, Y = B(ro).

With the Brownian scaling in mind, let c¢>0, and let

~ _1 2
B, = ¢ B{c t),
t
t
5 =] vByas, T = inffu:43 >t}, T =BG
¢t 0 s ! 0 T ! 0 [
Then
~ -2-0 2 ~t -2 + 2+ ~t -1_+ 2+
P, = c d(c t), T. = ¢ 21 {c OLt), Y, =¢ Y (c ut).
t t t
Suppose for a moment that B0 =0, so that B and B are identical
+ .
in law. To avoid too heavy a notation, let us write J for the Levy

+ +
measure of Y at 0 (as a measure), as well as writing J (-) for the
i + + +
density of J relative to Lebesgue measure. In short, J (dx) = J (x)dx.
Let y>0, and let

+ +
T =T = inf{it:Y¥ =0; Y > .
v (y) = inf{ o S 4

Then, for =z>y,

I (z,=) /3 (y,=) = P0[Y+(Ty) > 2] .

~ -2-a ~p e -1_+
But, with the obvious notation, T(y) = ¢ 2 T(cy) , and Y (Ty) = c 1Y (Tcy).
Thus,
+ + ' + + +
I (2,2)/3 (y,=) = PLY (T,,) >cz] = I (ez,») /T (cy,=) ,
+
s¢ that J (y)<ryn for some 1 . Thus, for some constants ¢ and 0,

+ 6 - £
AMypy=lyl , A (x)«|x]".
The fundamental equation (3.9) therefore takes the form:

2 2
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(4.1) 5 g + = g = -Rlx| |yl .
2Aalx|" 8x 2lyl” 8y

The Brownian scaling gives us further information: for x<0, y>0,

+ ~ ~ + _
{4.2) ]P[YOSy[BO—x} = IP[YOSyIBO—x] = ]P[YOScyIBO-—cx] .




where © = II/(2+4a) . See €3.123 of Titchmarsh [ 4]. Similarly,

for y>0.

1 = J K2 %% (x, 7y dx = 8¢k F cosec ((1-8)8) .
0

Hence £ is the unique solution in (0,1) of the equation.
cosec(BS) = Kcosec ({(1-B)38) ,

and then

C = ‘fT_l(Z + OL)KB

sin{f§ .
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and let M+(t) be the T'X[ matrix with (i,j)th component Mij(t)°

Let

+ +
= > . T
T, inf{tzo0: Y € 1.

+
For ye€Int(E ), and icT, let

+ d + + .t -
= = <t T -)=i].
hyi(t) dt:Py[TP t; Y ( r ) ]

+ + + .
Let hy_(t) be the row vector {hyi(t): icl}. Let Jiydy be the Lévy

measure describing jumps made by. Yt from i, and let JT be the column
+
vector {Jiyz iell. Introduce the Radon-Nikodym derivative

+ -1 _+
A =
iy lveyy | iy
+ +
Define b and B via

+ + +
biy(t)dy = Biy(t)IV(y)ldy = IPiEY (t) e dyl .

+ + + . i
Introduce the column vectors b_y(t), B.y(y), A.y in the obvious way.

The Fokker-Planck equation
2
13
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holds, and, as at (3.2) transforms to

a _+ +_+ + +
. e t) = t) + M (A ),
(5.1} Nt B.y( ) gyB-y( ) _( ) -y( )
where 2
gt =2iymI™ 2, for yemtEh .
¥ 2 ay2

+ + +
Let I,p be the taboo transition function on E xE :

+ _ + ) "
rP (t,yl,yz)dy2 = :mylty (t) ¢ dyz, TP> t].

Then, the symmetry property:

+ _ +
IV(yl)irp (t,74,5,) = |V(y2)frp (t,75,7;)
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Exactly as in the argument following (3.7), we can deduce from (56.3) and

<§_+9+)p = (Jh— (HOM (trdat) AT .
X Yy X -y

And we can again appeal to the symmetry result in [ 2 ] to obtain

(5.1) that

- + + + - -
(5.6) Jhx-(t)M (t)at A-y = Jhy.(t)M (t)dt) A-x

We claim that for some constants ai(ie Ty,

(5.7) Jh_ (0IM'_(t)dt = a AT,
X LI B 1 1X
(5.8) Jh+ (M (t)dt = a AT .
¥ of iiy

This is one of several claims in this paper for which full justification
will have to wait to a later paper. The reader should believe cur results
because the analogues for symmetric Markov chains are true, and we have
tested out that one can force through weak-convergence results,

Let us explain briefly a direct method of deducing (5.7) and (5.8) from
(6.6) in the case when i is a regular boundary point both for Y+ and Y
(so that each of these processes has a true continuous local time at i ).
As méntioned in a Note at the start of §3, this will be the situation in all

but extremely pathological cases. The point is that as y-—+>i,

+ +
AL = A ’ i¥1i,
3y o( 1y) i¥

+ -—
lith C(OM, | (t)dt U2
¥ J1dg < = otherwise .
These results allow us to infer (5.7) from (5.6).
It will simplify the algebra to assume, as we may plainly do, that the
4 -
normalizations of Li and Li are made compatible for each i, so that

a, =1, Vvi.
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