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Introduction. Let Bt be a Brownian motion and f : R
d → R

d be Lipschitz
continuous. In this paper we will be concerned with processes of the form

(1.1) Xt = Bt +

∫ t

0

ds

∫ s

0

du f(Xs −Xu)

where f(x) = g(x)x/‖x‖ and g is real valued. When g is a nonegative, Xt is a continuous
analogue of a process invented by Diaconis and studied by Pemantle (1988a,b) so stealing
a metaphor from that paper (and changing the sign) we can think of Xt as the trajectory
of a tourist who wants to stay away from places she has visited before. For a more serious
physical motivation one can think of Xt as describing a growing polymer in which newly
added units are repelled by existing ones. As a polymer model, (1.1) has two serious weak-
ness: (i) the repulsion does not prevent self–intersections, and (ii) while real polymers can
rearrange themselves to minimize energy, ours cannot. However, in contrast to Edward’s
model (see Westwater (1980a)) the existence of the process presents no problem. It is easy
to verify that (1.1) has a pathwise unique strong solution. Furthermore, one can hope that
results about the end to end displacement of our polymer will give some insight into the
behavior of more realisitic models.

In this paper we will be concerned with the asymptotic behavior of Xt as t → ∞.
The reader will see this problem presents some interesting mathematical challenges. Most
of our results are confined to one dimension but the first one is general.

Theorem 1. Suppose ‖f(x)‖ ≤ M and f has compact support. There is a constant
Γ <∞ so that

lim sup
t→∞

‖Xt‖/t ≤ Γ a.s.

To see that there is something to prove, notice that the cumulative drift at time t might be
as large as Mt2/2. Indeed in Theorem 4 we will see that for any α < 2, there are examples
with bounded f in which Xt is of order t

α. Although Theorem 1 is not obvious, it is not
difficult to prove. The key observation is that if f(x) = 0 for ‖x‖ ≥ K and ‖Xt‖ grows too
quickly then many annuli {x : (n − 1)K < ‖x‖ < nK} must be crossed quickly. However
after a fast crossing the drift is small and the chances of another fast crossing are not very
good.
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To get lower bounds on Xt/t we have to impose some strong assumptions.

Theorem 2. Suppose d = 1, f ≥ 0 and f(0) > 0. Then there is constant γ > 0 so that

lim inf
t→∞

Xt/t ≥ γ.

The condition f(0) > 0 is too strong; f 6≡ 0 should be sufficient. A more interesting
problem is to strengthen the conclusion.

Conjecture 1. Suppose f has compact support, f ≥ 0, and f 6≡ 0. Then there is a
constant µ > 0 so that

Xt/t→ µ a.s.

If one is not careful this is easy to prove. “Clearly”, ifX0 = 0 the incrementXt−Xs is larger
in distribution than Xt−s (due to the repulsive effect of Xr, 0 ≤ r ≤ s), so the result follows
from the subadditive ergodic theorem. We have put clearly in quotation marks because
the conclusion, if true, is far from clear and may be false. If we let Yh = Xs+h −Xs and
construct a copy of Xh on the same space by using the Brownian motion Bs+· − Bs to
drive the two SDE’s then Yh will be larger than Xh for small h, but if τ is the first time
Xt = Yt the drift in the Y process at time τ may be smaller since Yτ −Ys ≤ Xτ −Xs does
not imply f(Yτ − Ys) ≥ f(Xτ −Xs). (Yτ − Ys may be negative!)

The assumption f ≥ 0 is undesirable since it says that our tourist avoids familiar
territory by moving North. The situation becomes very complicated when f has values of
both signs.

Conjecture 2. Suppose f has compact support, xf(x) ≥ 0, and f(−x) = −f(x) then
Xt/t→ 0 a.s.

Before the reader declares that this is an obvious consequence of symmetry we would
like to observe that there is no zero–one law, so one might have Xt/t → c > 0 on a set
of probability 1/2. Indeed the last behavior occurs in Westwater’s polymer model (see
Kusuoka (1985)), but computer simulations of related discrete systems suggest that for
our process the following scenario is more likely. Xt grows (or decreases) linearly for a
while until a fluctuation overcomes the drift, which is O(1), and brings the process well
below its maximum. At this point the push from above is larger than that from below
and the process tends to decrease for a while. Once the process gets well inside the initial
increasing segment things get complicated but can be visualized if one thinks of the graph
of the local time at time t as a mountain range and Xt as an Brownian ant that drifts
downhill and drops sand at rate 1. We have no idea whether Xt satisfies the central limit
theorem or displays more interesting behavior but suspect that this will be very difficult
to resolve.

The problems we encountered in the compactly supported case become somewhat
simpler when f is not integrable, for then the drift grows with time. Suppose

(A1) |f(x)| ≤M
(A2) f(x) is decreasing for x ∈ [q,∞)
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(A3) xβf(x) → ℓ > 0 as x→ ∞ with 0 < β < 1

Letting xt = T−αX(tT ) and Wt = T−1/2B(tT ) we can rewrite (1.1) as

(1.2) xt = T 1/2−αWt + T 2−α

∫ t

0

ds

∫ s

0

du f(Tα(xs − xu)).

If we take α = 2/(1 + β) so that 2 − α = αβ and let T → ∞ we see that the limit, if
strictly increasing, should satisfy

(1.3) xt =

∫ t

0

ds

∫ s

0

du
ℓ

(xs − xu)β
.

One solution is xt = c0t
α where c0 satisfies

(1.4) αcβ+1
0 =

∫ 1

0

ℓdu

(1− uα)β
.

Our first result says that this argument provides an upper bound

Theorem 3. Suppose (A1)–(A3) hold and α and c0 are as above. Then

lim sup
t→∞

Xt/t
α ≤ c0.

The last result when suitably reformulated holds in R
d. A more interesting extension

would be to prove

Conjecture 3. Suppose d = 1 and f(x) = x/(1 + |x|β+1) with 0 < β < 1. Then with
probability 1

2
Xt/t

α → c0.

To see the difficulties involved the reader should try the following much simpler open
question.

Problem. Under the hypotheses of Conjecture 3,

sup
t

|Xt| = ∞ a.s.

Our last result gives some support for Conjecture 3.

Theorem 4. Suppose (A1)–(A3) hold, f ≥ 0, and f(0) > 0. Then

Xt/t
α → c0 a.s.

The rest of the paper is devoted to proofs. Theorem k is proved in Section (k+1).
Sections 2–4 are independent of each other and can be read in any order but the proof
in Section 5 depends on results in Sections 3 and 4. In what follows c0 is the constant in
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(1.4) and c is used for constants either slighly larger or smaller than c0, so we use D to
denote dumb constants whose values are unimportant.

2. Upper bound for compactly supported f. In this section we assume that

(i) f : Rd → R
d is Lipshitz continuous,

(ii) f(x) = 0 for ‖x‖ ≥ 1,
(iii) ‖f(x)‖ ≤ K for all x.

We will prove the following result that after rescaling space and then changing time to
make the Brownian motion have variance t gives the version stated in the introduction.

Theorem 1. There is a constant γ > 0 so that

lim sup
t→∞

‖Xt‖/t ≤ 2/γ a.s.

Proof: Consider the one dimensional s.d.e.

(2.1) dYt = dBt +

{

d− 1

2(Yt + 2)
+ 7γK

}

dt Y0 = 0

and impose reflecting boundary conditions at 0. We can choose the parameter γ > 0 so
small that if H̃ = inf{t : Yt = 2} then

(2.2) P (H̃ ≥ 5γ) ≥ 1/2

Now let Hn = inf{t : ‖Xt‖ = 2n}, τn = Hn −Hn−1, Gn = FHn
where Ft is the filtration

generated by the Brownian motion and define events Gn = {τn ≥ 5γ}, Fn = {τn ≤ 2γ}.
When Fn happens we speak of a fast crossing from 2n − 2 to 2n. When Gn happens we
speak of a slow crossing from 2n− 2 to 2n.

To prove the result it suffices to show that lim infn→∞Hn/n ≥ γ. The first step
in doing this is to observe that if HN ≤ γN , then at least half of the τ1, . . . , τN must be
smaller than 2γ, so there are at least N/2 fast crossings from 2n − 2 to 2n. The second
step will be to show that after a fast crossing from 2n − 2 to 2n there is probability at
least 1/2 that the crossing from 2n to 2n+ 2 will be slow, so that the total time to get to
2N will be larger than γN with high probability.

To carry out the second step note that the process Rt = ‖Xt‖ − 2n satisfies

(2.3) dRt = dBt +

{

d− 1

2(Rt + 2n)
+

∫ t

0

Xt

‖Xt‖
· f(Xt −Xu) du

}

dt

Now suppose that Fn has happened and n ≥ 1. Then for any t ∈ [Hn, Hn + 5γ], the drift
in (2.3) is bounded above by (d−1)(2(Rt+2))−1+7γK while the process is in [2n, 2n+2].
A standard comparison theorem for stochastic differential equations (see e.g. Rogers and
Williams V.43) implies that we can build a process Y ′ identical in law to Y so that

Y ′
t ≥ ‖X(Hn + t)‖ − 2n for t ∈ [0, 5γ]
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so P (Gn+1|Gn) ≥ 1/2 on Fn. The desired conclusion now follows from a result of Dubins
and Freedman (1965) (see e.g. Durrett (1990) p. 220)

(2.4) Suppose Gn is adapted to Gn and let pn = P (Gn|Gn−1). Then

n
∑

m=1

1Gm

/

n
∑

m=1

pm → 1 a.s. on

{

∞
∑

m=1

pm = ∞

}

To derive the desired conclusion now we let Nn be the number of fast crossings in
the first n trials and N∞ = limNn. On {N∞ <∞} it is clear that lim infn→∞Hn/n ≥ 2γ.
On {Nn = ∞} we can apply (2.4) to conclude that the number of slow crossings Mn

satisfies
lim inf
n→∞

Mn/(Nn/2) ≥ 1 a.s.

The last result implies that for n ≥ n0,

Mn ≥
4

5

Nn

2
.

For n ≥ n0 either Nn ≥ n/2 (in which case Mn ≥ n/5 and Hn ≥ γn) or Nn < n/2 (in
which case there are more than n/2 crossings that take more than 2γ units of time and
Hn ≥ γn). In all cases we have lim infHn/n ≥ γ and the proof is complete.

3. Lower bound when f is positive at 0. In this section we consider the one–
dimensional situation with f ≥ 0. We do not require that f have compact support but
we do need f to be positive near 0. Again, scaling space and time gives the result in the
introduction.

Theorem 2. Let A = inf{f(x) : |x| ≤ 1
2 }. Then

lim inf
t→∞

Xt/t ≥ A1/2/2.

Proof: We will prove this result by getting a lower bound on the total drift up to time t
and then observing that the contribution of the Brownian motion can be ignored. Indeed
in this argument Brownian motion could be replaced by any process with Bt/t → 0 as
t→ ∞. Let g(x) = A when |x| ≤ 1/2 and g(x) = 0 otherwise.

∫ t

0

ds

∫ s

0

du f(Xs −Xu) ≥

∫ t

0

ds

∫ s

0

du g(Xs −Xu)

= 1
2

∫ t

0

ds

∫ t

0

du g(Xs −Xu) =
1
2 J(µ)

where µ is the occupation measure µ(C) =
∫ t

0
1C(Xs)ds and

J(ν) ≡

∫

ν(dx)

∫

ν(dy) g(x− y).
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If ν is a probability measure supported in [0, n] then

J(ν) ≥ A

2n−1
∑

k=0

ν((k/2, (k + 1)/2])2 ≥ A/2n

by the Cauchy–Schwarz inequality. Let bt = sup{Xs : s ≤ t} and at = inf{Xs : s ≤ t}.
Then

Xt −Bt =

∫ t

0

ds

∫ s

0

du f(Xs −Xu)

≥
At2/2

2(1 + bt − at)
≥

t2A

4(1 + bt − infs≤tBs)
.

since Xt ≥ Bt. On the other hand

Xt −Bt ≤ 1 + bt − inf
s≤t

Bs,

so it follows that

(3.1) 1 + bt − inf
s≤t

Bs ≥ tA1/2/2.

The last inequality implies that

(3.2) lim inf
t→∞

bt/t ≥ A1/2/2.

To strengthen this to the conclusion of Theorem 2 observe that if s < t

Xt −Xs = Bt −Bs +

∫ t

s

du

∫ u

0

dv f(Xu −Xv),

so taking s to be the first time maxr≤tXr is attained it follows that

(3.3) Xt − bt ≥ inf
s≤t

(Bt −Bs),

and

(3.4) lim inf
t→∞

Xt/t ≥ lim inf
t→∞

bt/t.

Combining (3.4) with (3.2) completes the proof of Theorem 2.
For results in Section 4 we will need a simple extension of the results above.

Xt −Xs ≥ Bt −Bs +

∫ t

s

du

∫ u

s

dv f(Xu −Xv).
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If we let bst = maxs≤r≤tXs and repeat the proofs of (3.1) and (3.3) it follows that

(3.5) 1 + bst −Xs − inf
s≤r≤t

(Br −Bs) ≥ (t− s)A1/2/2

(3.6) Xt − bst ≥ inf
s≤r≤t

(Bt −Br)

Adding (3.5) and (3.6) gives

(3.7) Xt −Xs ≥ (t− s)A1/2/2 + inf
s≤r≤t

(Bt −Br) + inf
s≤r≤t

(Br −Bs)− 1.

4. Upper bounds for fat tailed f. The assumptions on f throughout this section are

(i) |f(x)| ≤M
(ii) f(x) ≥ 0 decreasing for x ∈ [q,∞)
(iii) xβf(x) → ℓ > 0 as x→ ∞ where 0 < β < 1

Let α = 2/(1 + β) ∈ (1, 2), observe 2− α = αβ, and define c0 by

(4.1) αc1+β
0 =

∫ 1

0

ℓ du

(1− uα)β
.

Let ǫ > 0 and c > c0. Our aim is to show that if T is large P (XT > cTα) < ǫ. The first
step in achieving this aim is to make some choices that for the moment will seem rather
mysterious. Their purposes will be revealed in the proof below. For the moment the reader
should be content to check that such choices are possible. Once we have introduced the
necessary definitions we will explain the idea behind the proof. Pick θ > 1 so that

(4.2) γ ≡ c− θ
c1+β
0

cβ
> 0.

Pick N ≥ q large enough so that f(x) ≤ θℓx−β for x ≥ N . Choose ρ > 0 and b ∈ (0, 1/2),
so that

ν ≡ 2− α+ 2ρ < α,(4.3)

ν < α(α− 1/2)/(α− b)(4.4)

This is possible since 2− α < α and the right–hand side of (4.4) is α when b = 1/2. Let
ǫT = T−ρ, define ηT by the requirement

(4.5) T 2−αM(ηT + T−αN) = (cγ/2)ǫ2T .

Note that the definition of ηT and (4.3) imply ηT ∼ (cγ/2M)T−ν and let

(4.6) φ0(t) = c

∫ t

0

(αsα−1) ∨ ǫT ds φ1(t) = φ0(t) + ηT .
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Let τ = inf{t : xt = φ1(t)}, and let σ = sup{u < τ : xu = φ0(u)}. We will show
that P (τ ≤ 1) is small by getting an upper bound on the drift at times s ∈ [σ, τ ] which
shows that the crossing from φ0 at time σ to φ1 at time τ must be due to an abnormally
large fluctuation in the Brownian motion. To bound the drift we let

v = sup{u : φ1(u) + T−αN < φ0(s)}

with sup ∅ = 0. (Note that v depends on s.) Since xt < φ1(t) for t < τ and xs > φ0(s)
using (i) and (ii) (and recalling N ≥ q) gives

(4.7)

∫ s

0

f(Tα(xs − xu)) du ≤M(s− v) +

∫ v

0

f(Tα(φ0(s)− φ1(u))) du.

To estimate the integral on the right we observe that the choice of N and the definition of
v imply

f(Tα(φ0(s)− φ1(u))) ≤ θℓ{Tα(φ0(s)− φ1(u))}
−β ≤ θℓ{Tα(φ1(v)− φ1(u))}

−β.

Now
φ1(v)− φ1(u) = φ0(v)− φ0(u) ≥ c(vα − uα),

so

(4.8)

∫ v

0

f(Tα(φ0(s)− φ1(u))) du ≤
θ

cβTαβ

∫ v

0

ℓ du

(vα − uα)β
=

θ

cβTαβ
vα−1αcβ+1

0 ,

by the definition of c0 given in (4.1). Now the convexity of φ0 implies

(s− v)φ′0(v) ≤ φ0(s)− φ0(v) = ηT + T−αN,

and recalling the definition of φ0 gives

(s− v) ≤ (ηT + T−αN)/(cǫT ).

Using the last inequality and v ≤ s with (4.7) and (4.8) gives

∫ s

0

f(Tα(xs − xu)) du ≤

(

M(ηT + T−αN)/(cǫT ) +
θ

cβTαβ
cβ+1
0 αsα−1

)

.

Recalling 2− α = αβ and using the definition of ηT in (4.5), and γ in (4.2), we have

(4.9) T 2−α

∫ s

0

f(Tα(xs − xu)) du ≤ (γ/2)ǫT + (c− γ)αsα−1

The last inequality gives an upper bound on the drift that is smaller than φ′0(s). To
complete the proof we will now bound the contribution of the Brownian motion. Since we
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have chosen b < 1/2, it follows from Lévy’s modulus of continuity for the Brownian path
that we can pick K so that

P (|Bt −Bs| > K|t− s|b for some s, t ≤ 1) ≤ ǫ.

Hence with probability at least 1− ǫ,

K(τ − σ)bT 1/2−α ≥ T 1/2−α(Bτ −Bσ)

≥ xτ − xσ − (γ/2)ǫT (τ − σ)− (c− γ)(τα − σα).

(4.10)

by (1.2) and (4.9). Now

φ1(τ)− φ0(σ) = ηT + c

∫ τ

σ

(αsα−1) ∨ ǫT ds,

so the right-hand side of (4.10) is at least

(4.11) ηT + c{(τα − σα) ∨ ǫT (τ − σ)} − (γ/2)ǫT (τ − σ)− (c− γ)(τα − σα)

≥ ηT +
γ

2
{(τα − σα) ∨ (ǫT (τ − σ))}

since for a, b, c, x, y > 0, c(x ∨ y) − ax − by ≥ (c − (a + b)) · (x ∨ y) (consider two cases:
x ≥ y, x < y.) Combining (4.10) and (4.11), recalling the definition of ηT , and using

τα − σα =

∫ τ

σ

αsα−1 ds ≥

∫ τ−σ

0

αsα−1 ds = (τ − σ)α

gives

(4.12) K(τ − σ)bT 1/2−α ≥ DT−ν + (γ/2)(τ − σ)α.

We will now show that our choice of ν makes this inequality impossible for large T .
To do this we observe that

KhbT 1/2−α ≤ DT−ν when h ≤ (D/K)1/bT−(ν−α+1/2)/b

KhbT 1/2−α ≤ (γ/2)hα when h ≥ (2K/γ)1/(α−b)T−(α−1/2)/(α−b)

Our choice of ν and b in (4.4) implies that

(4.13)
ν

b
<
α(α− 1/2)

b(α− b)
=
α− 1/2

α− b
+
α − 1/2

b

so
ν − α + 1/2

b
<
α− 1/2

α − b
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and the inequality in (4.12) is impossible for large T . This shows that when |Bt − Bs| ≤
K|t− s|b for all 0 ≤ s ≤ t ≤ 1 it is impossible to have xt = φ1(t) for t ≤ 1 and the proof
is complete.

5. Lower bound for fat tailed f. Throughout this section we will suppose

(i) |f(x)| ≤M
(ii) f(x) is decreasing for x ∈ [q,∞)
(iii) xβf(x) → ℓ > 0 as x→ ∞ where 0 < β < 1
(iv) f(x) ≥ 0 and f(0) > 0

The proof of Theorem 4 is similar to that of Theorem 3 but requires more computation.
As in the last section we begin by making a number of choices whose purposes will become
clear later. After we have enough defintions we will explain the idea behind the proof. Let
ǫ > 0 and c ∈ (0, c0). We choose δ > 0 to satisfy

(5.1) γ ≡ (1− δ)2c1+β
0 c−β − c > 0,

and then pick N large enough so that

(5.2) f(x) ≥ ℓ(1− δ)x−β for x ≥ N

Next choose b ∈ (0, 1/2), 0 < λ < ν < α to satisfy

α

2(1− b)
> λ(5.3)

α−
1− 2b

2(1− b)
> λ(5.4)

1

2(1− b)
− νβ > λ(α− 1)/α(5.5)

ν < {α− 1/2− λb(α− 1)/α}/(1− b)(5.6)

To see that such choices can be made, note that α > 1 implies 2− α < 1, so when λ = 0
and b = 1/2 we can pick ν small enough so that inequalities (5.3)–(5.6) hold strictly.

Let xt = T−αX(tT ), aT = T−λ, ηT = T−ν and

φ0(t) = ctα − aT φ1(t) = φ0(t)− ηT

τ = inf{t : xt = φ1(t)}

σ = sup{u < τ : xu = φ0(u)}

ρ = inf{t : xt = φ0(t)}

tT = inf{t : φ0(t) = 0} = c1/αT−λ/α

Our aim will be to show that if

(⋆) Wt = T−1/2BtT satisfies |Wt −Ws| ≤ K|t− s|b,
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then for large T , τ ≤ 1 is impossible. We will do this in two steps. First we will show
ρ ≥ tT and then we will show that tT ≤ σ < τ ≤ 1 is impossible. In each part of the proof
we will use the assumption f(0) > 0 to give a lower bound on the rate of growth of Xt.

Lemma 5.1. If (⋆) and and T ≥ T0(K, b), we must have ρ ≥ tT .

Proof: When t < tT , φ0(t) ≤ 0. To get a lower bound on xt we observe that (3.7) with
s = 0 and t = u implies

Xu ≥ uA1/2 + inf
r≤u

(Bu −Br) + inf
r≤u

Br − 1.

Changing the time scale u = tT , using (⋆), and dividing by Tα gives

xt = T−αX(tT ) ≥ ψ(t) ≡ T−α(tTA1/2/2− 2T 1/2Ktb − 1).

Let κ = (4K/A1/2)1/(1−b). When t = κT−1/2(1−b),

tTA1/2/2 = 2T 1/2Ktb.

So if uT = 2κT−1/2(1−b), t ≥ uT , and T is large then ψ(t) > 0. To take care of [0, uT ] we
notice that over this interval

ψ(t) ≥ −T−α(2T 1/2KubT + 1) = −T−α(DT (1−2b)/2(1−b) + 1)

φ0(t) ≤ D′T−α/2(1−b) − T−λ

(5.3) guarantees that for large T , φ0(t) ≤ −T−λ/2, so using (5.4) we see that for large T
ψ(t) > φ0(t) for t ∈ [0, uT ] and the proof of Lemma 5.1 is complete.

To finish the proof of Theorem 4 now it suffices to show:

Lemma 5.2. If (⋆) and T ≥ T1(K, b) then it is impossible to have tT ≤ σ < τ ≤ 1.

Proof: Suppose that tT ≤ σ < τ < 1. and let σ < t < τ . We want to get a lower bound
on the drift at time t. To do this using (ii) we have to know Xt −Xs ≥ q so our first step
is to observe that (3.7) says

Xt −Xs ≥ (t− s)A1/2/2 + inf
s≤r≤t

(Bt −Br) + inf
s≤r≤t

(Br −Bs)− 1,

so it follows from the proof of Lemma 5.1 that if t− s ≥ uT and Wt satisfies (⋆) then

(5.7) XtT −XsT ≥ (DT (1−2b)/2(1−b) − 1) ≥ q

for large T . Let v = t − uT . To estimate the drift of xt = T−αX(tT ) we observe that
xt ≤ φ0(t) and if s ≤ v,

q ≤ Tα(xt − xs) ≤ Tα(φ0(t)− φ1(s)),
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so (ii) and (iv) imply

(5.8)

∫ t

0

f(Tα(xt − xs)) ds ≥

∫ v

0

f(Tα(φ0(t)− φ1(s)) ds.

Using the defintion of the φi and then (5.2) we see that for large T

(5.9)

∫ v

0

f(Tα(ctα − csα + ηT )) ds ≥
1− δ

cβTαβ

∫ v

0

ℓ ds

(tα − sα + ηT /c)β

=
1− δ

cβTαβ

[
∫ t

0

ℓ ds

(tα − sα + ηT /c)β
−

∫ t

v

ℓ ds

(tα − sα + ηT /c)β

]

.

Changing variables s = tu and using αβ = 2− α

∫ t

0

ℓ ds

(tα − sα + ηT /c)β
= tα−1

∫ 1

0

ℓ du

(1− uα + ηT /ctα)β

≥ (1− δ)tα−1αc1+β
0

(5.10)

for large T , since t > tT and ν > λ imply ηT /ct
α ≤ ηT /ct

α
T → 0. To estimate the second

integral on the right hand side of (5.9) we observe that tα − sα ≥ 0 implies

(5.11)

∫ t

v

ℓ ds

(tα − sα + ηT /c)β
≤ cβℓ(t− v)/ηβT = 2ℓcβuT /η

β
T .

Combining (5.9)–(5.11) and using the definition of γ in (5.1) gives

(5.12)

∫ v

0

f(Tα(ctα − csα + ηT )) ds ≥
(γ + c)tα−1α

Tαβ
−

(1− δ)2ℓuT

TαβηβT
.

Now we use (1.2) and the relationship 2− α = αβ to write

(5.13) − T 1/2−α(Wτ −Wσ) = −xτ + xσ + T 2−α

∫ τ

σ

dt

∫ t

0

f(Tα(xt − xs)) ds

≥ −c(τα − σα) + ηT + (γ + c)(τα − σα)

− (1− δ)2ℓuT η
−β
T (τ − σ)

Letting ξT = 2(1− δ)ℓuT η
−β
T , then using the convexity of xα and the fact that σ ≥ tT we

can write (5.13) as

−T 1/2−α(Wτ −Wσ) ≥ γ(τα − σα) + ηT − ξT (τ − σ)

≥ ηT + (γασα−1 − ξT )(τ − σ)

≥ ηT + (γαtα−1
T − ξT )(τ − σ).

(5.14)
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Now (ignoring constants)

tα−1
T = T−λ(α−1)/α η−β

T = T νβ uT = T−1/2(1−b)

and we have supposed (see (5.5))

−
1

2(1− b)
+ βν < −λ(α − 1)/α

so ξT = o(tα−1
T ) and the right hand–side of (5.14) is positive for large T . Using (⋆) now, it

follows that for large T

(5.15) KT 1/2−α|τ − σ|b ≥ ηT +
γα

2
tα−1
T (τ − σ).

To see that this is impossible for large T we notice that

KT 1/2−αhb ≤ ηT when h ≤ DT (−ν−1/2+α)/b

KT 1/2−αhb ≤
γα

2
tα−1
T h when h ≥ DT (1/2−α+λ(α−1)/α)/(1−b)

and (5.6) implies that

−ν − 1/2 + α

b
>

1/2− α+ λ(α− 1)/α

1− b
.

REFERENCES

L.E. Dubins and D. A. Freedman (1965) A sharper form of the Borel–Cantelli lemma and
the strong law. Ann. Math. Statist. 36, 800-807

R. Durrett (1990) Probability: Theory and Examples. Wadsworth, Pacific Grove, CA

S. Kusuoka (1985) Asymptotics of polymers measures in one dimension. In Infinite dimen-

sional analysis and stochastic processes, edited by S. Albeverio, Lecture Notes No.
124, Pitman, Boston

R. Pemantle (1988a) Random processes with reinforcement. Ph.D. Thesis, M.I.T.

R. Pemantle (1988b) Phase transition in reinforced random walk and RWRE on trees.
Ann. Probab. 16, 1229–1241

L.C.G. Rogers and D. Williams (1987) Diffusions, Markov processes, and martingales.

Volume 2: Ito Calculus. John Wiley and Sons, New York

M.J. Westwater (1980a) On Edwards’ model for long polymer chains. Commun. Math.

Phys. 72, 131–174

M.J. Westwater (1980b) On Edwards’ model for polymer chains: II. The self–consistent
potential. Commun. Math. Phys. 79, 57–73

M.J. Westwater (1985) On Edwards’ model for polymer chains. In Trends and develop-

ments in the Eighties, edited by S. Albeverio and Ph. Blanchard, World Publishing,
Singapore

13


