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GEOMETRIC INDICES;
A THEORY OF HEDGING AND ECONOMETRIC ANALYSIS

WITH APPLICATION TO THE U.K. STOCK MARKET
By Chris Rogers, Stephen Satchell, and Youngjun Yoon'

In this paper the authors describe how to hedge a confract written on a specific
geomertric index, and calculate the fair (no-arbimrage) price of the conwact in
a log-Brownian complete markets framework; results are also discussed in the
more general context of semi-martingale price processes. Tests for arbitrage
.violations are discussed and carried out on daily UK. data for the FT30 index
from January 2, 1988 to December 31, 1991. The procedure seems 10 work

~ well and be robust 10 jumps in a sense made precise in the paper.
Keywords : Geometric Index, Hedging, Fair Price, Semi-Martingale Process

In the UK stock markct; two domestic indices that are frequently quoted are the FT100 and
the FT30 indices. As a summary of the direction and the éxtcnt of average changes of stock
prices, the indices provide a convenient way [© indicate general market movements and a
powerful source ¢ information for investment decisions. They can be also good insouments
of wrading in baskets of securities for the portfolio managers and of creating derivatve
financial intermediaries. The Financial Times Ordinary. Share Index (FT30) is the geometric
average of 30 shares on an unweighted basis, the geometric average involves the product of
the 30 prices of the component stocks taken to the 30th root. A curious fact about these

indices is that whilst there is a myriad of contingent cORTACLs written on the FT100 index,




there is not a single one written on the ET30 index, at least not that is exchange-traded. In
the United States, the Value Line Composite Index, which is a geomewic mean of 1700
shares, has had both option and fumures contracts written on it

One explanation given for this phenomenon is that the FT100 index reflects the market
portfolio more accurately, being value weighted and comprising more shares. A second
explanation given is that the FT 10 index, being a geometric average, cannot be hedged since
it cannot be replicated by an appropriate portfolio of assets? A third reason given for the
lack of interest in the FT30 index is because of its downward bias. If we pay the geometric
average out at ime t, we should expect at time T, T2t, 10 receive a return which is lower thar;
the geometric mean of the expected returns, reflecting the downward bias of the geometric
average.

7The contribution of this paper is to address the last two points; we construct a hedging
portfolio for a contract whose payoff is, say, the FT30 index under the assumption that the
thirty shares are joint log-normally distributed and we show that this ponfoﬁo will also hedge
if the prices follow more general processes. We test the performance of our replicating
portfolio using daily data trom January 2, 1988 to December 31, 1991. Furthermore, we
investigate the propertes of the residuals from the FT30 minus its replicating portfolio, the
purpose being to see if hedging is a practical reality. We discuss the prqblem of estimating
the fair price that our contract written oﬁ the FT30 index should be sold at This analysis
answers the third anxiety mentioned earlier, our fair price and its practical analoguc, the
sample fair price, adjusts the price of the FT30 contract downward in order t0 adjust for the
bias in the geometric mean.

This paper is organized as follows. In Section 1, we formulate. and prove the basic results

on hedging the FT30 index. We first show how to hedge iﬁ the log-Brownian case, and then

generalize our assumptions. In Section 1L, under the log-Brownian dismibution, we discuss
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the resulting estmation problems. We then study the FT3Q index from January 2, 1988 10

December 31, 1991, comparing the FT30 index with its replicating portfolio. Conclusions

follow in Secton IIL

1. FAIR PRICE OF THE FT30 INDEX
In this section we shall imagine that we are bankers offering the following conact. Atome

t you pay a price H 10 take a long position in the FT30 contract. At time t+1, 120, you

receive the amount (ﬂ_gj{,__{ ));? where §,(t+7) is the price at time t+7 of the jth share and
N is the number of dji'flfercm shares. In the empirical work on the FT30 index, the number
N of shares is, of course, 30, but we keep it general for now. The issue \;vc initially address
is , what is the “fair” price, H, that the bank should charge for such contracts? Since the

FT30 contract has a non-linear payoff, the contract evaluated at the expected values of each

share cannot provide the fair price of the conmact, since, by Jensen’s inequality,
N i N 1
E[(TIS (11 NFY < (I ES G+t »JT Wwhere Ef- ] is the expectation operator at dume L
J ]
1 ~l

Before we answer this question, we shall start with details of the distribution of the prices.
We shall assume that there are N shares with time t prices S(1). The prices follow log-normal

diffusion processes, that is,

N
(D ds(n = aS(ndr + Sj(r)):cj*dzk(r)
k=l

where Z=(c,} is an (NxN) non-singular matrix, 0 and ¢y, are constant and

: dz(t):(dz,(t),...,dzk(t)....,dz,\-(t))’ is a vector ofi independent Brownian motions (B.M.). We shall

also assume the existence of 2 bond, which pays a constant rate of interest r. This is
recognizable as a complete markets frame-work as described in Harrison and Kreps (1979)
or elsewhere. Hence, we are able 10 determine the no-arbitrage or “fair” price of our contract.

We make the usual simplifying assumptions about z€ro dividends, zero transaction costs,
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perfect markets, etc.

Our first argument, familiar 10 the readers of Merton (1973), goes as follows. Let the fair

price of our FT30 contract be H= H(S(t) 1), where $(t) is the (Nx1) vector of pn'ccs and the

contracl matures at tme t+T. Smcc the contract has a payoff (IIS (M_-))“V which is a

homogeneous function in §; (t+1), this contract can be hedged by holdmg the N shares, there

is no need 10 hold bonds. The dynamics of H can be described via Itd’s lemma as

dH = EHds +_.EEHdeS - H.dr

)-l 2;-1;-1
(EHOLS - EEEH SSa;, - Hdr + ZHS Ec Adz.(1)
ol =1yl

= Hpd: sz dz,(0)

(2) N
where B = (LHoS, + _}:ZH SSw, - H)H,
J-l ix]jml
@ = )'30‘t 0 (ig=1,-...N)
=1
N

and ¥, = THS0,/H .

Let the ECU value of your holdings in the contract be Wo, your holdings in asset j is W, we
assume zero aggregate investment at all times t, thus EW =0, this portfolio is the self-
financing portfolio of finance, it pays no interim dxwdcnds (positive or negative) until the
maturity of the contact.

The instantaneous value of the portfolio, P, is

‘ N dS.
(3) = Pw 250w
' H m S !

Substituting from (1), (2) and collecting terms we see that
(@ N N TN
dP = (BW, + Eajwj)dr + E(Wo Lt ,-}.:;W’o’* z,(0) .

To render dP riskless we must choose W, and {Wj)f_ | so that
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N
5 Wy, - TWg, = 0 (k=1,..N) .

1
The implication of such 2 choice together with the self-financing nature of the portfolio

implies that

N
(6) pW, + ZaWw, = 0.

1

Equation (5) can be rewritten as

N WHS, |
™ ):(_LHJ_’ + W)s, =0 (k=1,..N) .

J

Since the matrix T={0,} is assumed non-singular, this implies that

®) P Wm0 Gl

- Equation (6) can also be rewritten using (2) as

¥ 1 XN N
&) W"(jEH’S o —EEH"S'S’% -H) + HEaJWj =0,
Using (8) and substituting, we see that
A
(10) Iysussa, = H,
Diegjm 7 1Y

is the (vector) non-linear partial differential equation for the fair price H of the contract. Our

N 1
particular contract has the payoff (n_gj(,...-r))w . thus a trial solution might be of the form
i

N 1
an HSW,1) = qALS@)T  where q(0)=1
= :

Hence, we have




et b AR e ¢k e et

v commmlom w m ok am e 0

H =
7 NS,
H, = — ij
(12) N'SS,
(1-MH -
= l-j
N3t
gy = 9WH
o)
thus equation (10} becomes
. NN N -
(13) | 1459 1ga0M 40
‘ 2 imiN? 21 N? Q(T)
The last equation is easy 1o solve, in fact
Q) Qe
(14) 1) = exp(- m T
a) = exp(-(L2 - S50
so that the fair price of the contract is
N 1
(15) H(S®1) = exp(- l(" ) _ f YIS ) .
N i

Note that Q is the matrix (@), this is the unit tme variance-covariance matrix of
In(S;(t+1)/S;(0), j=1,..N, m(Q)=Xw; and ¢ is an (Nx1) vector of ones.

The term g(t) is a number between 0 and 1 since

i Qe

~N-§ = W—("‘(Q) - N )
(16) | - %I.(nm - “;e »
i
= —(ar{Q({d - 2
@ A

and I-ee’/N is idempotent, it can be written as CC’ so that _;;’.C =%’.tr(C’Q C), [>0 follows
from the positivity of the trace of a non-null positive semi-definite matrix, thus it proves
O<g(t)<l. Although one may believe that the market. knows the value of cxp(-_z%.), the

economist does not and this will involve estimation, we shail deal with this in the next
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section.

We now calculate W, and W, From the solution (8), it is immediate that

) . %%
(17 W,- = __NE

so that 1o hedge the FT30 conmact you hold a portfolio (W/N)e', that is , invest the value of
your holdings in the FT30 conmact equally in the N shares. An alternative view might be
more intuitive, if you are holding the N shares long in equal investments in value terms, then
a perfect hedge can be arained by taking an appropriate short position on the FT30 conmact.
Our result is summarized as Theorem 1. |

THEOREM 1: Under the assumptions given by equation (1), in order to hedge the FT30

contract you invest the value of your holdings in the FT30 contract equally in the 30 shares

e'Qey 115, F for

i

And the fair price of the contract is, H(S(1) = cxp(—_(rr(Q)—-

N=30.

We now move to the more general case where the log-price processes of the N shares can

be any semi-martingales. As before, let S(t) be the price at time t of the jth share, and write

Y(o) = (HS (r))“’

j=l

for the index at time t. We assume that for each j,

(18) d(logS (1) = dX () + dAQ)

where X is a continuous semi-martingale, and A is a common finite-variation process, for

details and definitions, see Rogers and Williams (1987). Then

(19) d(logY (1)) = dX(1) + dAQY)

where X(1)= (}:x (HYN. One application of the general case is that the share prices depend

;-I
upon mixed jump processes of random size. A special case of equation (19} is log-n normal




it oot m T AL g b s 1y e e A e b e

-

B L L CINPTT

P11 AR Y SRV T

A S Y T

———
+ e p———

Brownian modons with Poisson jumps that have normal magnitudes, this model has been

studied by Press (1967), Beckers (1981) and Akgiray and Booth (1987). We shall assume

that equation (1) has been changed 10

N
(20) as(n = S(tadr + Yo,dz(0) + (exp(Q)-1)dg())
: k=1

where Q is a random variable. We can think of Q as the random log-rate of profit in S;(t)
due to the shock dq(t). The process q(t) is a Poisson process with Poisson parameter A, jump
size exp(Q)-1, this is a compound Poisson process. It may seem that there is some limitation
in assuming only one jump for the whole market, nevertheless this corresponds to a common
shock such as an unpredicted change in stamp duty or é change in dealer’s charges all of
which are calculated as raies common to all shares rather than absolute amounts. Also, itis
nécessary for the semi-martngale processes that we consider that the jump parts be the same

for each share. Then, equaton (19) holds.

Returning to the general case (19), we can use Itd's formula to obtain the stochastic
equation for Y, see-Theorem (39.1) in Rogers and Williams (1987),2
dy, = de")
- ¥ _{d(log?) + .;.ddb,} + AY, - ¥, AdlogD),
=Y (dX, + dA, + %ddb‘ cet -1 -dA)

=Y {dX, + 1 <X> + e - 1)
2

where <X>, is a predictable quadratic covariation process. If we similarly develop S{1), we

obtain
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d.S(I) - d(e l'ogS(J))

(22) = 5 (1-){dUogS () + <X>} + AS (1) - S(1-)b(logS),

| MM,
= S (-M{dX (D) - E<XJ>' ~e 1} .
Combining (21) and (22), we learn that

ay,  NdS( ~
23) &, 1B Ly - L Td<X>, .
Y‘_ N S (f“) 2 IN jet !

If we now make the simplifying assumption that for some constant k=0

(24) Vgexs, - 2 Ed<X> = —kdr ,
2 2N1'l

an assumption that will often be true, then (23) can be rephrased as

(25) | d(e*Y) = 'N'ESG% ety .
. =

The interpretation of this is very sriking; under the assumpuons (18) and (24), the process

W =¢"Y,, the wealth process, is a self-financing portfolio, which at time t invests the same
sum 1, ”Y'_E_l._.wt_ in each of the N shares.
N N

What would be a fair price, H of the contract at time t which pays the investor an amount
Y,.. at a fixed later time 1+17 By using the self-financing property of the wealth process,

we find that €Y, =e"*VY,,. Thus, the fair price of the contract paying Y, is

§ 1
26) HS@),1) = e =S N7 .
=

In this derivation, there’s no need to postulate a risk-free bond, this can be contrasted with
the Black and Scholes model where 10 hedge an optionr we need a riskless bond. We present
this result as Theorem 2.

THEOREM 2: Under the assumption tha prices follow a general semi-martingale process

given by equation (18) and that the predictable quadratic covariation processes of the assets




and the FT30 index satisfy equation (24), then the FT30 can be hedged by holding equal
value in each asset and the fair price of the contract is given by equation (26).

COROLLARY : In a market where N shares are driven by N Brownian motions and a jump

process which is compound Pozsson in equation (20), the fair price of the FT30 contract is
e'Q
ey

given by H(S(1),x)=e -*f(Hs (:))W where k-_._.(rr(Q )- <
(Proof of Corollary) It 15 well known that :hc last term in equation (20) is a finite variaton

process and

d<X> = E{(dX, ]

= E[{adr + .‘530 dz, (0]
Ela (dz)2 + "a dr():c dz(n) + (X0, Az, (O]

= )chkdr since <dz>, =E[(dz())*|{ )=dr and z]s are mdependent
= mdt

N

- A Tacx> = .__):cndr LGP
Nm ! Nt 2N

d<X>, = EUdXW))
1 35
- EUGEX 07U

- EUS (g~ Do d O]

- _l_iE[();I?cﬁdzk(t))zU.]
7

N
- .KII.EE[(e’Edz)dz'Z’e 1] where Q=TT
- 1 YE[dzdr H)Ee = L osredr = £ ey
N2 N‘Z .NZ
ld<X> = eQe
2 ! 2N?
1,M(Q)  eQe
koo - . ED.
2( N e } Q

It is obvious that Theorem 1 is a special case of Theorem 2.

Of course, the preferred hedge for many insritutiong may be partial rather than total
insurance in which case one can price an option on the FT30 contract, the option for a fixed
exercise price will be easily determined along familiar Black and Scholes lines, we note,

however, that hedging the option would now require us to hold bonds. We proceed with the
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calculation of the price of an European call option on the FT30 index generated by equation
(1).
THEOREM 3: Under the assumptions of Theorem 1 and the existence of a riskless bond,

the price of call option for an exercise price E and maturity T equal to the maturity of the
contract at time 0 is e TBS(M, T, E.r.0y’) and o, =X Xw,/N* where BS(x,T.XK r.0°) = xd(d,)-
Ke'Td(d,) is the Black-Scholes formula. ‘

(Proof) If n=e"Y, then

o 1R
- - N N
B de™n, _ (EdS() dr = __):dS(z)
em, NumS0 Nj )

where Sj(t)sc'“sj(t). Thus under the equivalent martingale measure the existence of which

requires the existence of a riskless bond, ™1, is a martingale and

Eo[ e -rT(e -anT_E)*]
e TE [e "T(n;~¢"E)] - Q.ED.

(28) Eo[e -'T(YT'E)’]

The above formula has been independentty found ‘oyCakici, Eythan and Harpaz (1988) in

their pricing of a call option on the Value Line Composite Index.

2. ESTIMATION
In this section we shall work with the simple case of equatdori {1). Before we start our
empirical analysis, we would like to discuss the statistical problems involved. The problem
of computing the fair price, given a data set of d_aily pﬁccs {Sj(t)], j=1,...,N and t=1,..,T, 1§
reduced by equation (14) to estimating €2, the variance-covariance mauix of the daily log-

returns. It is well-known that under the assumptions in equation (1) the maximum likelihood .

estimator of @ is
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§ = 1 E(r - ), —r)

Y ‘1 m]

where 1, = log(Sl.{Hl)/S‘.(r))
A 7-1
and 1, = Lrf(T-1) .

=] .

The obvious unbiased esimator of @ is

15
s, = T—?.,.l(r -r)(r ,,)

Then, the matrix S={sij} is known to follow a Wishart distribution of dimension N with

parameters T-1 and Q/(T-2), which we shall denote as W(T-1,Q/(T-2)). The stadstc 1Is

cxp(- rr(S(I _e_))), so we need 1o know the distribution of m(SM) where M is an

1dcmp0[cnt matrix. We note that (S) has a known distribution. In fact,

7T-1 =

@9)  Problr(S)<m=de= Q) TE__Pmb(xm_n.&__)E( 1) €0, -MT-2)

where O<A<ee is arbitrary. The second summation is over all partitions x=(k;,Kz,....Kx), where

k,2...2ky20, of the integer k, C(-) is the zonal polynomial corresponding to X, and

T-1 1,.
(=) E( - 5D,

where (x)&l_ = x(x+1) {x+k;-1)
This result is proved in Muirhead (1982, Theorem 8.3.4). We refer 10 the distribution in
equation (29) as the trace Wishan disu'ibution and write it as tW(T-1,Q/(T-2)). If we now
consider tr(SM) where M is ldcmpou:nt of rank k, we find the following result.
LEMMA 1: If ir(S) is trW(T-1,Q/(T-2)), then tr(SM) is rW(T-1,C’QCIT-2)), where Mis
idempotent, tr(M)=k and C is an (Nxk) matrix of rank k such that M=CC'.

(Proof) 1f M is idempotent of rank k, we can find an orthogonal P such that
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where P, is the first k columns of P whilst P, is the last (N-k) columns. Hence M=P,F/, so0
that C=P, is an (Nxk) marrix of rank k such that M=CC’. Now C'SC - W(T -1,C°QCHT-2)

by Theorem 3.2.5 in Muirhead (1982) and so (C’'SC)=t(SCC)=u(SM) which completes the

proof. Q.E.D.

For the problem we are considering M=l-e¢’/N, which is idempotent of rank N-1, so that

we have proved that u'(S)=u'(S(I.\-»ec'/N)) is distribuied as Wy, (T-1,C'QC/(T-2)) where Ii-
ee’/N=CC’ and C is Nx(N-1). We now wish to consider what the mean of cxp(-_,}_.lp_n'(s'))

is. We can se¢ immediately via Jensen’s inequality that
Elexp(~—r(SM] > exp(- s r(ELSD) -
2N 2N ,
Now E(3)=QM from the propertes of the Wishart, so that

E[exp(—.sz_rr(s'))l > Q(T)=CXP(-—2%V-II’(Q M) .

An exact calculation for §(1) = exp( -E}V_tr(f)) is possible,

E[G(1)] E[CXP(--z-iv-tr(Sf))]

(30)

H

E[cxp(-_z_lN_xrwN_,(T-l.C'Q CIT-2)1,

the last equality following from Lemma 1. The right hand side of (30) can be inté.rpreted as

the expectation of the moment generating function (m.g.f.) of a trace Wishart evaluated at the

T4

mamix -1/2N). The m.gf., ¢, is given by ¢() = det(/- 21C'Q C ™7, see Muirhead (1982,
: T-2

p.342). Therefore,

cQc )-Igl

(31 E[4(1)] = det{] + ———
(4(1)] et NT
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Let Ay, be the cigenvalues of C'QC, then

N-t ’y -_7_';
i) = (L1 » —= =
ELG() (1_1( T ,)))
= I (H<1 LN m
- exp(-r-10 )
l
= - e 1 +
cxp( 5 Elo ( T 2)))

T-1 & T-1 2

= LR 3V WA __.___27\. + 0 =

P S W T =)
exp(_tr(C"QC) _mecao | T- l)tr(CQ C) o( 1 )

ZN 2N(T-2) ANYT-2) T?
r(S2 M) (S M) r($¢ M)
= exp( - 1 - + + 0
exp( X INGT-2) 4aNHT-2) ) 9z 2)

Thus we can construct a crude approximation to g(1) by considering

(32) _ e (S 1
GO+ o) + o)
1 . ' rr(S) " 4
Then can be approximated by ___( 1 - 2 )+ o ) by similar arguments.

q(1) ¢(1) INT-2)
We can actually do better than this by searching for the estimator of q(1) which is minimum

variance unbiased. Such an estimator should exist for this problem since the rates of return
diswribudon is linear exponential, for the case when N=1 we explore this question in the
Appendix. The bias adjustment suggested in equation (32) is used later in the paper, tﬁcm
appears to be little difference between the two bias adjustments, we report results in Table
2. discussed later in the text

We investigate the hedging performance for the FT30 index over January 2, 1988 10
December 31, 1991. From the dara of the 30 constituents of the index, a new index is
constructed since we found discrepancies between the rcpont;d index and one calcﬁlatcd from
the reported ind%vidual companies, we prefer the latter so that discrepancies, if they occur,
will not be due to mismeasurement. We shall consider three hedg‘iﬁg policies. The first one,

reported to one of the authors in conversation, is apparently used by some City insttutions.
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It holds equal numbers of shares in each company, this may be motivated by a desire 10
reduce transactions costs or profiting out of Jensen’s inequality, it is obviously simple. The
second policy is to hold equal amounts of money in each company. This is the correct
hedging policy as proved in Theorems 1 and 2. Under -t.hc second hedging portfolio, the
number of shares held differs across the companies and intuitively this would reflect the
investment opportunities or market activities more accurately since it is formed in terms of
value. However, considering Jensen's inequality the fair price requires an adjustment to
correct the downward bias. So our third hedging policy is to hold the amount of the fair price
equally divided into 30 companies in money terms.

Formally, in policies 1 and 2 on each day t we pick a portfolio g, with value £5=Y,, and
thep look at its value £8S,,, next day (policy 1 holds &,(t)=YJ):Sj(t) for j=1,...N, policy 2 holds
E,()=Y/NS;(t) of share j). The values U=Y,,-€S,,, are computed, the sample mean, star;dard

deviation and (U ~U)* are reported in the first three columns in Table 1. Then the t-statistc

is the statistic J7-1 (_7/(2([]‘_(})2)12 for testing that the mean is zero, the last column is the

sample correlation coefficient for the bivariate sample (§S,,,,Y,.,)- In policy 3, we hold an
amount §j(t)=cf" Y /NS (1), where the estimator k is computed from the library, and then
proceed as for policies 1 and 2.

First of all, we have 1o estimate the variance-covariance matrix of 30 log-returns. The
estimation values of equation (14) for daily data are based on 101 and 201 observations prior
1o our data period. As we procced with the estimation, the fixed library size is updated. We
fixed our librarj size because of concern about the implications of the empirical findings of
hetcmsccdésﬁciry and mean-reversion in stock returns discussed elsewhere in the literature.
By doing this, the estimation of the variance-covariance matrix is based on pre-sample data

and updated each period. Our calculations used the maximum likelihood estimators
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. Thus Jensen's inequaliry

—E(r —r)(r -r)/(T 1) which are biased, in fact E[S]-(TT -2)Q

applied here gives us

E[cxp(-_j%tr(f))] > exp(- (;,l)rr(fM))
NS =
(exp( 5N —_))
T2
= (@77 .

T-2 .
Since O<g(l)<1, (q(l))ﬂ > g(1), so that our estmator will still overestimate. However, we

found that the bias of ’;1. from s; is negligible. We also include the bias adjustment estimation
suggested by equation (32) based on the 101 library size.

We invest the same amount of money as the index value for the first and the second policies
and an amount equal to the fair price for the third, which is less than the index itself. We
then compare the difference between the realized payoff from our hedging portfolio and the
index in the next period. Table 1 reports the replicating performance of the three policies.

Our interest is 1o see how well a hedging portfolio replicates the FT30 index. The
correlation coefficients between the index and the hedging portfolio tell us that investing
equal amounts of money in each company catches the movement of the index better than
holding equal numbers of shares although both are exceptionally highly correlated. The
difference is increasing with the library size. Basically, policies 2 and 3 have the same
dynamics and the only difference is the magnitude, as it becomes clear when we examine the
mean and varance. The sum of squared residuals is su’ongly suggestive that policy 3
outperforms the others in replicating the index. We note. that t-statistics for testing the zero
mean of the residual also supports policy 3, which is insignificant in all cases. Hence, we
can consider policy 3 as the best way 10 hedge the FT30 ihdcx.

We now conduct a second experiment. At this stage, it is worth thinking what the
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properties of hedged portfolios with respect 10 either method would be. We concentrate on

the two hedging strategies for the amount of £100,000 invested in the FT30 index. Our first
Y5 (r+1)
strategy is going shont in an equal number of shares, this will pay off -100000 ! . Our
Yy 1s going q y TS0

N S+l
100000 5~ 1+ )‘ We
N m Sj(r)
shall regard these as Iwo pension funds. There are two merchant banks, one, an avaricious

second strategy is to go short in equal value, then this will pay off -

one, charges Y(t) for the FT30 contract, the other, a less greedy organization, charges 8Y(1),

1 ’
the fair price, where y(;)-_-(ﬁgj(;))'ﬂ and 6=cxp(-..;. trI(VQ -%2;:)). Both pay Y(i+1) at
=

maturity. An investor is faced with four strategies to go long in good or bad banks and short

in good or bad funds. We assume that Investor 1 is long in a bad bank contract and short in
a bad fund, Investor 2 is long in a bad bank and short in a good fund, Investor 3 is long in
a good bank and short in a bad fund, and Invcstér 4 is 1o.ng in a good bank and short in a
good fund. The long and short positions can be switched, but it won’t change any result
except the sign. Each investor is long and short in the amount-of £100,000 at each period,
costing her zero, and she liquidates her contract in the next period, the exercise being repeated

every period. We denote their returns by R(t+1), i=1,...,4, where

ye+1) _ 250D

. S (O R X0
R(+1) = 100000{ Y&2D _ 1554+
R (t+1) = 100000[Y(f+1) _ Egj(l‘-!-l)]

’ oY IS0
£,+1) = 10000070, - 15250+

v N S®

We shall go more deeply into the properties of the hedging residuals of R (1+1). We now
consider the random variable R (t+1) which represents “the rate of return” on the residual of
the hedging portfolio, R, (1+1) in the following sense. We need to scale any discrepancy due

to discretizarion, the appropriate scale being the initial invesiment in the conwmact,
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i e
R

RG~1) _ Y@+1) _ 1550*D

R(+1) = ——— = — T S
100000 8y () N 50

The above equation has the imel:prctation of a scaled geomemic mean minus an arithmetic
mean. It follows that Y{t+1)/Y() is log-normal as are S, (t+1)/S (), j=1,....30. Since R Jt+1)
is a linear combinaton of log-normals, it has an unknown distibution and since its
characteristic function is unknown it seems difficult to say much about the density of R, {t+1)
numerically .or analytically. We shall have to settle with an analysis of the moments of
R,(t+1), before we do, we note one result,
LEMMA 2: R,(1+1) is independently and identically distributed ( iid.).
(Proof) Since §(1+1)/3(1) is 1id. and R,(r+1) = ...(H ’(Hl) ¥ - %S’( " ), itis a
8 = S0 Nja § 0
function of i.i.d. variables, thus it is i.id. Q.E.D.
- We now calculate E[R, (t+1)].
LEMMA 3: E[R(1+1) J=exp(Zor/N)-(1IN) Zexp(oy)<0 and E[R (t+1)]=0 where E is expectation

taken on any measure that equates O leaving other parameters the same, the equivalent

martingale measure being a particular example.

(Proof)
Ta 2w
R(+1) = %exp[ Mate e +X1,.}?}§cjt(zk(t+1)*z,(t))]-%ﬁcxp[aj-%m")+§0ﬁ(zk(t+1)—zt(t))]
- 1 EU.J-IT(Q )/2 1 ’ 1
E[R,(1+1)] = _e.cxp( = +2N2-°Qe) - .ﬁEcxp(aj)

1r(Q) _ 1 eQe)
2 N IN?

i

Ya.
exp(.w_’.) - _Ilchxp(aj) since % = exp(

where we have used the properties of the moment generating function of a normal
distribution. Taking expectations with respect 10 B rather than P is equivalent to setting all the
Q's equal to r or indeed any other constant. Thus E[RJ(H1)]=cxp(r)»cxp(r)=0. Finally

E[R,(t+1)]<0 by Jensen's inequality. - QE.D..




The significance of Lemma 2 is theoretical rather than prac:ic;'ﬂ, the observed data is
generated via P rather thn P, we shouid observe a negative mean. However, lemma 3 -
suggests a third interpretation of R,(t+1). If all the shares are perfect complements in the
sense that they all come from the same log-normal distribution, R,(1+1)=0 with probability
one. If we change the time interval from days to weeks or months the only change of note
is that E[R,(t+1)] is decreasing as the time iﬁtcrvals increases, that is growing in magnitude.
Also in le@ata 2 and 3, we assume that 8 is known; if © is estimated, the statistical
properties of R (t+1) will change.

Before proceeding further, we digress here to deal with R,(t+1) in the presence of the jumps
generated by equation (26). Note that |

N
RG+1) = _é.cxp[%):(uj-%mj) + LET0, 0070 + LOJ

1 N 1 N
-_Eexp[(aj-.icg’.) + Zo,(z,(e+1)-2,() + EQ ).

Nm

We see that Q influences the distribution of R,(t+1) in a non-trivial manner. To demonstate

the effect on E[R,(1+1)}, consider

E[R(t+D)] = E) [ NE {E(R‘(HI)IN(r),z(r)lz(t)]]
1) N()
Yio.-w/2 ¥ed
E[R +1) IND20] = <exp( (@02 | 22020, 1y
) N N
—%I_Zexp(aj-%n}fzcﬁzt(t)m(1)"("
. 1 E(aj-ml/Z)+ZEcjhzt(r)
E[R (1+1)|2()] [@-exp( = ~ )

-.}I_Eexp(aj-%%»«Ecﬁzt(z))}cxp(qa(1)1-1) -

Ta. 1 :
ER(+D)] = [cxp(—N—’—)--ﬁECXP(G)]CXP@J(l)l—l)

where ¢(1) is the m.g.f. of Q evaluated at 1.
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ELER,=D.) = exp(— 0 (Mexp(-A—) - < Eexp(@)exp(-1k)o ()

For a specific example suppose that Q,'-i.i.d.N(pq,cQZJ, J=1,...N(1), where N(1) is the Poisson

process,

N
E [exp(Z(Q;~1)]

N =1

E [expg > 0N N

MW

9 (1)

Using the fact that the m.g.f. of Poisson with parameter A is exp(A(exp(t)-1)), so
- 1
o(1) = cxp(n(cxp(pa+icé)—1)) .
Hence,

p3 '
ERR,q+1)] = [cxp(__ﬁ_".)-Nl..zcxp(aj)]cxp(l(cxp(pa+%Gé)-1)) .

Qur difficulties are complicatcd because estimation of Q and cxp(-l/(ZN)tr(QM)) will not be
straightforward, the sample variance-covariance matrix will depend in general upon pg and
0’52 in the normal case; for general Q dismibutions, S conditional on Q will be W (T-
1,exp(2XQ)EU(T-2)). For the case considered where Q is normal, maximum likelihood and
method of moments estimators can be used to estimate the parameters, see Akgiray and Booth
(1987), exc.

Because of lemma 2, we investigate the distribution of R,(t+1) over the sample period. For
the i.i.d. hypothesis the BDS test is an obvious choice, this was developed in Bréck, Dechert
and Scheinkman (1986) as a method of testing for structﬁrc in a series. The test is based on
the simple notion that for any iid. time series the probability of some event at t and 1,
Prob(A,NA), is just the product, Prob(A)Prob(A,) of the two events. Let x& R! be a time

series of length N, define the following,
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=1 iflx - X |se
=0 if |x -x|>€
m-l
(tm = HIE(IEOPI.!-&)'
=) '

and C(mng) = LT > ["(x.x), n<sN-m.
n{n=1) tecn !

Now define the following expectations,

C = El (xx))
K = EU (e x) (xx)) -

Brock, Dechert and Scheinkman (1986) prove that for any m>1, as n—e,

_‘/(.;I:(C(m,n,s) - C(l,ne)™ —NOD)

m=1
4K™ + AT K™ICH + (m-1)}C* - miKC»™ ) .

where GXm;E) =
jat

In computing o the consistent estimators C(1,n,) and K(1,n,&) may be used to replace C

and K respectively, where K(1,n,£) can be calculated by

6
1 z . .
K(1,ng} n(n-l)(nwl):g?:' I (xx ) (xp%,)

The results of the BDS test and some statistics from the residuals are presented in Table 3

where we used the library size of 101, 201 and a bias adjustment suggested by equation (32).

The mean values for the three different ime methods are very small and the t-statistics do

not reject a mean of zero. The BDS test rejects the hypothesis that daily residuals are i.id.,

we did not filter the data. However, although' we have 800 observations, the asymptotic

critical values may not be very helpful. We could simulate the BDS test for parameter values

near our maximum likelihood estimators and use the simulated critical values, but we decided

to use more traditional time series methods.

Firstly we plotted the data series, see Figure 1. There 1s a spectacular residual on the
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January 13, 1991 when the Gulf war had started. It is clear that a cﬁangc in-the §;(1) which
is self-cancelling with respect 10 the multiplicative index may still generate a large number
via the hedging component because of the discretization. Thus we might expect to see one
or wo very large negative vatues for R, (t+1). An alternative explanation may be that the
shares are generated by a process with jump components. We shall not discuss this further
and we shall szay with our maintained hypmhésis and investigate the behaviour of R (1+1) in
our data period and for a subset of the first 700 observations (which excludes the outlier).
The values of R,(1+1) for the first 700 values are plotied in Figure 2; they show basically the -
expected behaviour. Although most values are positive but very small there is an occasional
large negative value. In Figure 3 we present the correlogram for R,(1+1) calculated -in the 3
ways, with the different library sizes and the bias adjusmient. Although we do not report any
white noise fcsts on the correlogram, the largest t-statistic for an individual autocor;-elaﬁon
was about 0.3, so there appears no compelling evidence of any non-zero correlatons. Cur
final check was the spectral density presented in Figure 4. We present spectra for the two
different library sizes, both are approximately the same shape although (surprisingly) the
spectrum based on 2 library size of 201 was uniformly above the spectrum based on a library
size of 101. When we plotted the spectmim by using the first 700 observations, it is very flat
and relatively small. For the test of randomness we further investgate the cumulative
periodogram based on Figure 4.° Surprisingly the first 700 observations show a big deviation
from the 5% critical range while the whole data series, including the Gulf war, is nothing but
iid., see Figure 5. This is an interesung finding since including the Gulf war would
intuitively make the process non-i.i.d., not the other wéy round. Perhaps thé Gulf war was
not exogenous?

We finish this section by reporting the results of our second experiment describing the

relative performances of our 4 strategies, see equation (33). Each investor carries out her
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investment stategy until the last day. Table 4 shows the performance of the investors for the
period January 2, 1988 10 December 31, 1991. The table is produced by using different
library sizes, the purpose of the two library sizes being, as before to see how sensidve our
calculations are to the way in which we calculate 8.

We summarize the rcsﬁlts. Investors 1 and 2 always make a loss regardless of their choice
of Lﬁc funds since the bad bank overprices the contract. Investor 2 must make a loss since
the geometric mean is less than the arithmetic. In Table 4 Investor 3 has the largest profit,
which implies that the bad fund performs hedging very badly. Investor 4’s results indicate
that the fair price with equal amount of money in each stock is the best to replicate the FT30
index where the magnitude of her mean return is the smallest. If the bank is bad and
overcharges on the contract all hedging strategies will result in a loss for all dme intervals.
The different library size brought quite remarkable changes to the return. In the Iibraxyv size
of 101 Investors 3 and 4 in general make a profit, while making a loss in the library size of
201. Even though we don’t report the results here, the bigger library size seems to have less
fluctuation over different time intervals as we increase the holding dme to weekly, formightly
and monthly periods. The fact that the profit or loss goes 1o only £91 over 3 years is quite
remarkable. We note that the stable average profit close to zero of Investor 4 across the
different estimations means no arbitrage profit in her investment Strategy. Notice that the
variance of the dismibution of returns is determined by the choice of pension fund, not the
choice of bank, this is what stadstical ihcory would suggest.® Also the returns, a maximum
loss of £7567 or a gain of £679, seem little for £100.006 rolled over for approximately 3
years but the investor’s net position at all Gmes is zero. The result of including the first 700

observations is an unambiguous reduction in variance, we have eliminated the massive outlier.

In conclusion, all 4 methods lead to not rejecting E[R,(1+1)]=0. Thisis nota rejection of the

model via lemma 2 as the use of an estimated 0 implies an upward bias. Thus we conclude




that the evidence seems to be that hedging is possible, but the lack of a proper statistical
theory to base this on, must weaken this finding. This is not a fault of this paper but a fault
of any method 10 1est hedging and non-arbitrage relationships which are parameter dependent;

estimation error and profit (loss) realization cannot be easily separated.

3. CONCLUSION

It might be argued that it is inappropriate to assume that the 30 shares in the FT30 index
are multdvariate log-normal. Ina study of the disu'ibutional properties of the FT30, Yoon
(1991) found substantial evidence of kurtosis in daily log-returns for the pcﬁod of January
2, 1988 1o December 31, 1990. However, our results will stll hold if we assume that the
mstantaneous means in equation (1) are no longer assumed constant but allowed to depend
on Sjand t. In particular, our hedging portfolio and the fair price of the contract will g0
through in exacly the same manner. The change thar will occur will be for thc estimation
of €; in this case the distribution of S will no longer be Wishart

Given that we can relax our assumptions about the means, is it possible that the disribution
of daily rates of returns will exhibit the kurtosis and conditional heteroscedastcity that one

observes empirically. Both these factors can be explained by changing the running time of

" the B.M., see Stock (1988) and Yoon (1991). Another possible solution is to add jumps of

random size to the process as in Section I, see Perraudin et al.(1991), yet a third is to
consider the presence of ARCH effects as being due to the discrutization of the process, seo
Nelson (1991) and Melino (1990). We shall defend our position by invoking the last of these
three explanations, thus casting doubts upon our estimation of © but preserving the validity
of our hedging portfolio. It is well known, see Akgiray and Booth (1987), that the presence
of jumps will increase Lurtosis so Theorem 2 allows us to justify our hedging proccdurc,.

again stanstcal estimation of the fair price will be flawed.
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On balanc? the overall conclusion of this §aper is that it is possible to hedge the FT30
index. One can calculate a fair price, dependent on parameter esimation, in much the same
way as the Black and Scholes option price. We did find that there is a fundamental difficulty
in testing the validity of a non-arbitrage relationship based on unknown parameters; various
attermpts to evaluate the efficiency of hedging foundered on the extra variability inroduced
due to statistical estimation. Notwithstanding the caveats, our fair price performs well and

has certain robustness properties that make it potentially very atractive.

University of London,
University of Cambridge & University of London,
and

University of Cambridge

APPENDIX
Consider the situation where the N-vector is just a 1-vector, so we have that X, X,,.... Xt are

i.i.d. N(p,0), and the aim is 1o get an unbiased estimator of exp(-Ac®). Then the joint density

of exp(Xy),exp(Xy)...exp(Xy) is

exp{ __1__ [ET:(X -p)Y] —zlog(ln )]
262 ju1 7 2

T - -
exp{ - L [E®X -7 T (X1 Tlog(20?)

207 =
_ 1 2, B T T,
= exp{ 2025“){1. +025‘.Xj 5ot _2_.10,(21tcr’)}

so we have the exponential family with natural parameters (1/0%,p/c?)e R*xR. The idea is that

(t,(x),Lx)=(EXXX,) are sufficient statistics for the parameters (1,0%), so if we have one

* unbiased estimator of exp(-Ac?), thereby taking the conditional expectation of that estimator,
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given (1,ly), we get another unbiased estimator and this has a variance which is no larger.
In the case of an exponendal family whose parameter space contains an open set, there is only
one estimator which is unbiased and a function of the sufficient statistics, and this esumator
is minimum variance. One unbiased estimator of exp(-Ac®) is cos(¥VA(X,-Xp). In general,

if we Rao-Blackwell this, and take

~

| Elcos(y (X, -X,)) ;iﬁxf =R ’.£Xj=a]
-
- EeostR G, X [E0, =R -2 EX =a)
- Efeost/R (&, £ BE R -2 25,0
where £ is uniformly distributed on Lﬁc space of radius r=/ (R?*-a¥/T) intersected with the

hyperplane &- 1=0; the above becomes

= E[cos(y2A e§)|$§j=0,}:gf=r 2]
where ¢ is the unit vector (14 2.-142,0.....,0). Now rotate so that the vector 1 lies along the

direction (0,0,...,1) and then the fotated e will be orthogonal to this, and we get

T-1

= Efcos(y2A §,| L8/ =r"]
st
= J(ZOTv+1)r2R )™

where v=(T/2)-1 and J, is the Bessel function of index v, see Revuz and Yor (1991). Thus,
one can obtain the minimum variance unbiased estimator but it is not non-negative since J,

oscillates in sign. So it doesn’t seem like too good an estimator of a non-negative quality.
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TABLE I

Test of FT30(1)-H.P.(t) from 1/1/88 10 3171281

Mean Std. Dev. S.S.R. t-stat. Corr.Coef.

Lib.=101
Policy 1 -0.0301 0.5201 2470 -1.7475 0.999867
Policy 2 -0.0295 0.1349 17.37 -6.6048 0.999991
Policy 3 0.0007 0.1360 16.83 0.1646 0.999991

Lib.=201
Policy 1 -0.0349 0.5414 238.4 -1.8396 0.999807
Policy 2 -0.0311 0.1429 17.34 -6.2066 0.999986
Policy 3 -0.0001 0.1434 16.67 -0.0226 0.999986
Adjustment’ , A
Policy 1 -0.0301 0.5201 247.0 -1.7475 0.999867
Policy 2 -0.0295 0.1349 17.37 -6.6048 0.999991
Policy 3 0.0004 0.1359 16.82 0.0967 0.999990

*Adjustment was carried out with Lib.=101




TABLE II

_ Different Adjustments

Type Profit Mean Sid. Dev.
Library=101
Adjustment 1 Investor 3 . 59994 0.6590 148.27
Investor 4 91.24 0.1001 40.32
Adjustment 2 Investor 3 599.94 0.6590 148.27
Investor 4 91.24 0.1001 40.32
Library=201
Adjustment 1 Investor 3 - -512.97 -0.6322 153.03
Investor 4 -161.63 -0.1993 42.56
Adjustment 2 Investor 3 -512.97 -0.6322 153.03
Investor 4 -161.63 -0.1993 42.56
TABLE MI
Test of the Residuals
Lib.=101 Lib.=201 Adjusmment
Mean 0.1880E-5 -0.1555E-5 0.1000E-5
Std. Dev. 0.4032E-3 0.4256E-3 0.4032E-3
1-Sat 0.1407 -0.1040 0.0749
2 -28.39 -2.04 -3.91
BDS Test 3 4.58 33 97.35
Embedding 4 20.59 -6.26 29.23
Dimension 5 -12.65 -10.06 4.43

*The BDS statstics are for € equal 12 standard deviation. These are asymptoticaily
distributed N(0,1). Hsieh and LeBaron (1988) have found that the small sample 5%
critical values are 2.5, 3.3, 3.8, 4.6 for samples of 500, and 2.1, 2.2, 2.5, 2.9 for samples
of 1000, under simulated normals and N=2,34,5. We note that the assumpdon of

normality is a very strong reswiction.
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TABLE IV

. Investment Strategies

Type Profit* Mean Std. Dev.
Library Investor 1 -7271.53 -7.9820 148.43
=101 Investor 2 -7780.29 -8.5409 40.05
Investor 3 679.95 0.7468 148.27
Investor 4 171.27 0.1880 40.32
Library Investor 1 -7567.83 -9.3317 153.33
=201 Investor 2 -7216.46 -8.8988 42.42
Investor 3 147747 -0.5884 153.03
Investor 4 -126.13 -0.1555 42.56
" Adjustment Investor 1 -7271.53 -7.9820 148.43
Li\;thOI Investor 2 -7780.29 -8.5409 40.05
Investor 3 599.94 0.65%0 148.27
Investor 4 91.24 0.1001 40.32
First 700 Invesior 1 490.19 0.8183 106.98
Obs"“;‘.’f‘ms Tnvestor 2 -3672.21 -6.1305 a.27
Lib.=101 Investor 3 4103.81 6.8512 107.02
Investwor 4 -58.50 -0.0976 4.18

*Column 3 is total profit X[

5 is the sample variance s? = )_‘,(X‘_.fi YHT-2)-

t-1) from carrying out the swategy taken over different

- T
_investors and time pericds. Column 4 is the sample mean X. = LX e+ AT -1)- Column
=
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1. We would like 1o thank G. Hillier and W. Perraudin for helpful comments. Financial

support from the Newion Trust and INQUIRE (UK) is gratefully acknowledged.

2. This argurnent is reproduced in many parts of the literature, see Gibson (1991, p. 223) that

“we will never be able 10 perfectly hedge a long (or short) position in a Vaiue Line

Composite Index.”
3. The Theorem says that
_AX )= oy i X >+ —AX ) =‘
XY=, DX, I, [ DfX,IAX X2, E (X)fX) DK,

where X ={X, >0} is left-continuous process with limits from right, AX=X.-X,,, and

K X', = EX (OX (O1-E([X €)X (s-NK DX As-NI,.) -
=]

The adapted process X_is previsible and also locally bounded, so the integral exists.

4. We found that the inclusion of the second-order term didn’t improve matters, SO Our bias

adjustment is only based upon the first-order approximation.
5. The cumularve periodogram is a frequency domain concept based on the periodogram
T T

ordinates, _ __ 2 ;2 _12 2rjt _12 .
p,=a, +b; where a;= T Ex,cos(_]__) ancj bj—\l,’f Lx sin(

=1

2xjr.,. Then the test

T)

] n
procedure is constructed based on a series of statistics, s=Xp /Epﬁ (i=1,...,n), se¢ Durbin
=t " j=l

(1969) for more details.

6. Different hedging policies produce different distributions while the fair price is a simple

multiplication by a fixed scalar.
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