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Abstract. There have been various studies of the effect of a large investor’s
position on the price of an asset, typically assuming that agents’ demands are
exogenously-given functions of the current values of explanatory variables, but
it often turns out that the resulting actions of the agents are not optimal for
the (non-linear) market they then find themselves in. In this study, we suppose
that a single large investor declares at time 0 what (deterministic) proportion
of output he will consume at all future times, and the remaining agents respond
optimally to the residual output process. The large agent must propose a plan
which he can afford, and which would induce the other agents to agree to his plan
(for otherwise they would simply form a market on their own). We compare this
large agent’s optimal choice with the equilibrium which would obtain if he did
not attempt to exploit his large size but simply entered the market on an equal
footing. We find that sometimes this can be advantageous. We also investigate
circumstances under which the large agent might be better off at a later stage
to walk out on his original deal.

1 Introduction

It is often observed that the assumptions of the Black-Scholes paradigm are
all violated in practice, among them the assumption that agents act as price-
takers. Price can be influenced by positions taken, and it is a natural question
to ask how this effect operates, say in the simplest situation of two groups of
agents, perhaps a large homogeneous pool of price-takers, and a small group of
‘large’ investors who behave differently. Effects of this kind have been studied
in examples where there is a group of agents who are following some trading
program, as in Frey & Stremme [4], Gennotte & Leland [5], Platen & Schweizer
[6], and Brennan & Schwartz [3]. The paper of Frey & Stremme is typical, in
that there are ‘reference’ traders and ‘program’ traders, each with their own
demand functions, which depend on time, current price, and some ‘economic
fundamental’ process.

This is certainly one approach to the rationalisation of the demand as a func-
tion of environment, where the demand functions are in effect given exogenously
and prices are derived from that. The approach of the present study is somewhat
different, in that we aim to determine the demand by an endogenous derivation
of optimal portfolio and consumption paths. We treat the single risky asset as a
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share in some productive process, generating some dividend stream δt. A pool
of J−1 agents initially achieve an equilibrium using the shares which they own,
while a single (large?) agent J stands aside. Suppose now that agent J decides
to get involved in the market, buying and selling shares in some way that suits
his purposes. It is clear that the valuation at time 0 of a share must depend on
the whole of J ’s planned future holdings of shares and not just on the present
holding; indeed, the share price is the net present value of all future dividends
from the share, and if it were known that J was planning to squeeze the market
at some later stage, the value of the share would be greatly increased. So in
this situation, we see that we cannot price the share without determining what
J is going to do in the future. Now in the earlier studies mentioned above, the
actions of J (the program trader) are specified exogenously, but in our setting
we determine J ’s actions through some optimality criterion. Rather than spec-
ify the number of shares which agent J wishes to hold at different times in the
future, we shall suppose that J announces at the beginning that he intends to
consume at rate (1−ϕt)δt at future time t, leaving remaining consumption rate
ϕtδt for the pool. He chooses ϕ to maximise his payoff, subject to the constraint
that the members of the pool would be prepared to agree to the proposed deal.
To achieve this, he has to offer the members of the pool individually sufficient
reward to have an incentive to agree to his proposal. We suppose that the pol-
icy ϕ is stated, and there is some initial redistribution of shares, after which
the agents in the pool establish an equilibrium based on the declared dividend
stream ϕδ ≡ δ̃. We call the resulting solution the J-solution for short.

The situation just described could equally well be interpreted as the takeover
of a company (ABC plc), whose shares are held by J − 1 large shareholders, by
another company (XYZ plc) operating an identical technology. XYZ (thought
of as J) is assumed to have homogeneous ownership, and makes a proposal
to the J − 1 shareholders of ABC which guarantees them collectively a stated
time-dependent deterministic share of the output of the combined firm. The
J − 1 shareholders of ABC then decide between them how this should be di-
vided, according to the equilibrium that they would achieve when faced with
the dividend stream ϕtδt. Alternatively and equivalently, the proposal from
XYZ states explicitly what the dividend streams should be for each of the J − 1
shareholders, in accordance with this equilibrium. The shareholders of ABC
now decide whether to accept the offer of XYZ on a take-it-or-leave-it basis.

The theory of this optimal choice is presented in Sections 2 and 3. We then
investigate a number of examples numerically, comparing the J-solution with
the global equilibrium, which would be achieved if J simply entered the market
and did not attempt to exploit his power to remain aloof. We find that there is
always at least one member of the pool who prefers the global equilibrium to the
J-solution; this is a simple consequence of the absence of a blocking coalition
for the global equilibrium. Most of the examples are cases where J prefers the
J-solution to the global equilibrium. However, an example is given where J
prefers the global equilibrium.

The optimal choice for J will of course only work if the rule of law prevails,
so that a deal agreed at the start is enforceable. There is nothing in the spec-
ification of the J-solution which guarantees that we might not at a later stage
find that some subset of the pool might prefer to walk out of the agreed deal
and set up a market on their own. Likewise, there is nothing which guarantees
that J might not later prefer to take his existing holding of shares and walk out
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on the deal agreed originally. In Section 5 we show that in fact the members
of the pool will never choose to walk out of the original deal, but that J may
under certain circumstances prefer to abandon the deal and consume only the
dividend from the shares that he currently holds.

2 Equilibrium for the pool

2.1 General case

Suppose that the economy consists of a single infinitely-divisible commodity
and J − 1 agents. The supply of the commodity is the dividend of a business
which is modelled by the stochastic process δt on the time interval [t0,∞). This
dividend is continuously distributed to each agent at a rate proportional to his
share holding, thus at time t agent j receives the commodity at rate θj(t)δt,
where θj(t) is his share holding. Each agent consumes the commodity on the
time interval [t0,∞) and aims to maximise the total expected utility of his
consumption stream, given by

E

∫ ∞

t0

Uj(t, cj(t))dt,

where cj(t) denotes the rate of agent j’s consumption at time t. The utility
function Uj(t, ·) will be concave and increasing with

U ′
j(t, 0) = ∞, U ′

j(t,∞) = 0.

The total consumption of the agents is determined by a market clearing condi-
tion. As agent J consumes at rate cJ(t) = (1− ϕt)δt, the consumption rates of
the remaining agents must satisfy

∑

i<J

ci(t) = δ̃t ≡ ϕtδt. (1)

In order to achieve their desired consumption paths, the agents trade the com-
modity amongst themselves in return for shares or bonds. Both the share price
St and the bond price Bt are endogenous. The time-t wealth of agent j is defined
by

wj(t) = θj(t)St + ξj(t)Bt (2)

where ξj(t) denotes the bond holding of agent j at time t. The usual self-
financing conditions give the dynamics of the wealth process to be

dwj(t) = θj(t) (dSt + δtdt) + ξj(t)dBt − cj(t)dt. (3)

Finally, we require that the wealth process of each agent is always positive. This
bounds the consumption of an agent and makes the problem well defined.

We now consider the consumption paths that the agents will follow. The
market is complete and so the consumption paths of each agent will satisfy

ζ(t0, t) = pj(t0)U
′
j(t, cj(t)) (4)

3



for some state-price density process ζ(t0, t) and positive constants pi(t0), i =
1, . . . , J−1, (see, for example, Breeden [2]). Combining this with market clearing
(1) gives

δ̃t =
∑

j<J

Ij

(

t,
ζ(t0, t)

pj(t0)

)

(5)

where Ij(t, ·) is the inverse function to U ′
j(t, ·). The conditions on the util-

ity function mean that (5) determines ζ(t0, t) uniquely in terms of δ̃t and the
constants pi(t0), i = 1, . . . , J − 1.

The share price is the expected net present value of the dividend stream,
thus

St =
1

ζ(t0, t)
Et

∫ ∞

t

ζ(t0, u)δudu. (6)

Similarly the wealth of agent j is the expected net present value of his future
consumption stream

wj(t) =
1

ζ(t0, t)
Et

∫ ∞

t

ζ(t0, u)cj(u)du. (7)

Given the processes St, wj(t) and cj(t), (3) determines the share holding process
θj(t).

2.2 CRRA utility

We now specialise by making the following assumptions, in force for the rest of
the paper:

(A1) the utility functions are given by

U ′
j(t, x) = e−ρjtx−R

for positive constants R and ρi, i = 1, . . . , J − 1;

(A2) the dividend process is of the form

δt = exp(σWt + µt) (8)

for some constants σ and µ;

(A3) the process ϕ is deterministic.

These assumptions are a significant reduction in generality; agents have a com-
mon coefficient of relative risk aversion, and differ only in their impatience
parameters ρi. Stochastic divisions of the dividend process are disallowed. As
we shall see, these two assumptions make the problem tractable; allowing differ-
ent coefficients of relative risk aversion would greatly increase the computational
complexity. Although such problems can be handled effectively numerically (see
Rogers & Yousaf [7]), it is not our current purpose to get involved in such com-
plications. The assumption (A2) is probably the least substantive of the three
and could be relaxed quite easily, but this seems pointless in view of the other
two assumptions being made.

The following proposition summarises the simplifications which result.
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Proposition 1. Under assumptions (A1), (A2) and (A3), all agents keep all
of their wealth in shares at all times. There are positive constants pj(t0), j =
1, . . . , J − 1 in terms of which the share price may be expressed as

St = δtϕ
R
t

ψ(t0, t)

γ̃(t0, t)
, (9)

where

γ̃(t0, t) =

(

∑

i<J

(

pi(t0)e
−ρit

)1/R

)R

.

and

ψ(t0, t) =

∫ ∞

t

γ̃(t0, u)ϕ
−R
u eα(u−t)du, (10)

with

α = (1−R)

(

σ2

2
(1−R) + µ

)

. (11)

The optimal consumption streams of the agents are given by

cj(t) =
(pj(t0)e

−ρjt)
1/R

γ̃(t0, t)1/R
δ̃t. (12)

and the holdings of shares of agent j at time t is

θj(t) =
1

ψ(t0, t)

∫ ∞

t

(

pj(t0)e
−ρju

)1/R
ϕ1−R
u γ̃(t0, u)

1−1/Reα(u−t)du. (13)

Proof. See Appendix.
The vector p(t0) determines the state-price density and the consumption

paths, and hence the holdings of shares. In what follows, we have taken as
given the initial share holdings θ(t0) of the agents, and then computed the
values of p(t0) which match (13) to the given θ(t0). We shall write

πt0
j = E

∫ ∞

t0

Uj(t, cj(t))dt

=
1

1−R
E

∫ ∞

t0

e−ρjt

(

(

pj(t0)e
−ρjt

γ̃(t0, t)

)1/R

δt (1− θJ(t0))

)1−R

dt

=
((1− θJ(t0)) δt0)

1−R

1−R

∫ ∞

t0

e(α−ρj)t

(

pj(t0)e
−ρjt

γ̃(t0, t)

)(1/R)−1

dt

for the payoffs of the different agents in the original equilibrium.

3 J’s optimisation problem

We now consider a Jth agent who will follow the consumption path

cJ (t) = (1− ϕt) δt.

5



The problem for agent J is to choose the function ϕt which maximises his total
expected utility of consumption. However, he is constrained in the choice of ϕt.
One possible consumption stream is given by taking ϕt = 1−θJ(t0). This choice
of ϕt does not require any trading with the pool as J is consuming his share of
the dividend as he receives it. But for all other choices of ϕt agent J requires
the cooperation of the pool in attaining the desired consumption stream. We
will suppose that the pool will accept a particular ϕt if each member of the pool
prefers, or is indifferent to, that choice of ϕt over taking ϕt = 1 − θJ (t). The
preferences of an agent between various proposed functions ϕt are deduced from
the relative total expected utility of the corresponding consumption streams.
Agent J , therefore, has the following problem

sup
ϕ,{pi(t0)}

E

∫ ∞

t0

UJ(t, (1− ϕt)δt)dt (14)

subject to the constraints

E

∫ ∞

t0

Uj(t, cj(t))dt ≥ πt0
j j = 1, . . . , J − 1 (15)

where πt0
j is the total expected utility agent j obtains when ϕt = 1− θJ(t0).

We can solve this problem with a Lagrangian. The yi, i = 1, . . . , J − 1 are
non-negative Lagrange multipliers.

L = E

∫ ∞

t0

{

UJ(t, (1 − ϕt)δt) +
∑

i<J

yiUi(t, ci(t))

}

dt−
∑

i<J

yiπ
t0
i

∂L

∂ϕt
= E

∫ ∞

t0

{

−δtU
′
J(t, (1− ϕt)δt) +

∑

i<J

yiU
′
i(t, ci(t))

∂ci(t)

∂ϕt

}

dt.

Setting this derivative to zero gives the optimal ϕt. In the case of constant
relative risk aversion a solution is given by the roots of

e−ρJ t (1− ϕt)
−R

=
∑

i<J

yie
−ρit

γ̃(t0, t)
1−1/R

(pi(t0)e−ρit)
1−1/R

ϕ−R
t . (16)

ϕt is determined up to the choice of constants yi and pi(t0). These are chosen
to give equality in each constraint (15) and to maximise (14). Typically θj(t)
will not be continuous at t0 and so there will be a reallocation of shares at t0.

4 Numerical results

In this section we present some examples. The Lagrange multipliers can be
calculated numerically when the initial conditions of the problem are specified.
We will take t0 = 0. In the case of logarithmic utility, the form of δt only
influences the payoff by an additive constant, and so this is omitted. For non-
logarithmic utility, δt has to be specified. We choose δt to be of the form given
by (8) and report the value of the constant α, defined in (11). The bold typeface
indicates the largest payoff for an agent. The final row shows the proportional
change to the equilibrium consumption path that would be required to match
the J-solution payoff.
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Logarithmic utility (R = 1)
Agent 1 2 J

ρ 1.2 0.9 1.8
θ(0) 0.35 0.1 0.55
p(0) 1 0.1992
y 0.4086 0.08139

Equilibrium payoff −0.8623 −2.439 −0.3182
J-solution payoff −0.8728 −2.5312 −0.3059

Change 0.98754 0.92061 1.0223

Logarithmic utility (R = 1)
Agent 1 2 J

ρ 1.2 0.6 0.38
θ(0) 0.15 0.15 0.7
p(0) 1 0.6579
y 0.4919 0.3236

Equilibrium payoff −1.323 −3.104 −0.8893
J-solution payoff −1.529 −3.086 −0.7762

Change 0.78143 1.0105 1.0439

Logarithmic utility (R = 1)
Agent 1 2 3 4 J

ρ 1.0 1.4 0.7 1.9 1.1
θ(0) 0.2 0.1 0.3 0.25 0.15
p(0) 1 0.7006 1.045 2.375
y 1.212 0.8503 1.267 2.879

Equilibrium payoff −1.603 −1.618 −1.606 −0.6615 −1.719
J-solution payoff −1.601 −1.617 −1.610 −0.6610 −1.718

Change 1.0015 1.0022 0.99697 1.0010 1.0009

R = 3 α = −0.12
Agent 1 2 J

ρ 1.5 1.9 2.2
θ(0) 0.35 0.1 0.55
p(0) 1 0.02972
y 0.1755 0.005216

Equilibrium payoff −2.479 −24.75 −0.7081
J-solution payoff −2.517 −24.51 −0.7025

Change 0.99232 1.0048 1.0040

R = 0.5 α = 0.06125
Agent 1 2 3 J

ρ 1.1 1.4 1.7 2.0
θ(0) 0.2 0.3 0.3 0.2
p(0) 1 1.671 2.047
y 0.5196 0.8683 1.064

Equilibrium payoff 0.8991 0.8205 0.6764 0.4791
J-solution payoff 0.8853 0.8195 0.6816 0.4819

Change 0.96945 0.99742 1.0152 1.0115
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R = 2.3 α = −0.0962
Agent 1 2 3 4 J

ρ 0.9 1.1 1.5 1.8 1.4
θ(0) 0.2 0.1 0.15 0.3 0.25
p(0) 1 0.2372 0.7980 4.750
y 0.3277 0.1878 0.1328 2.229

Equilibrium payoff −6.0065 −12.682 −5.6642 −1.9051 −3.1163
J-solution payoff −6.0154 −12.691 −5.6618 −1.9033 −3.1160

Change 0.99886 0.99949 1.0003 1.0007 1.0001

R = 0.8 α = 0.07
Agent 1 2 J

ρ 0.2 1.4 1.7
θ(0) 0.35 0.49 0.16
p(0) 1 22.99
y 0.9216 2.160

Equilibrium payoff 34.77 3.446 2.273

J-solution payoff 33.93 3.497 2.263
Change 0.88522 1.0768 0.97826

In each example, the constraints in (15) are met with equality. This means
that the payoff for an agent in the pool under the J-solution is equal to the payoff
which that agent would obtain if J chose ϕt to be given by ϕt = 1 − θJ (0). If
each agent in the pool preferred the J-solution to the global equilibrium, the
pool would be a blocking coalition. The absence of blocking coalitions therefore
implies that at least one agent in the pool will prefer the global equilibrium to
the J-solution.

If each agent in the pool prefers global equilibrium to the payoff obtained
when ϕt = 1−θJ(0), as in the first example, then the choice of ϕt leading to the
global equilibrium satisfies the constraints. Therefore agent J ’s payoff under
the J-solution will be greater than under global equilibrium, as the J-solution
gives J his maximum payoff over functions ϕt which satisfy the constraints.

The final example shows that J does not always prefer the J-solution to
global equilibrium.

5 Breakdown of the rule of law

In section 3 agent J made the choice of ϕt at time t0 and it was assumed that
each agent would follow the consumption path implied by ϕt. In this section we
consider whether the deal reached at time t0 will ever break down at a future
time. This would occur if one of two conditions holds, either

1. a subset of the pool prefers to stop trading outside the subset and forms
its own equilibrium, or

2. agent J prefers to stop trading and consumes the dividend as he receives
it.

The following lemma, which is proved in the appendix, shows that condition 1
is never satisfied in the case of constant relative risk aversion.
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Lemma 1. Without loss of generality assume that ρ1 < ρ2 < . . . < ρJ−1.
Let each agent have constant relative risk aversion, suppose that the dividend
process is of the form given by (8), and assume that ρJ 6= ρ1. Then every subset
of the pool contains at least one agent who prefers the J-solution to the subset
equilibrium.

Now we look at the second condition. The lemma below gives conditions
under which J will break away. It is necessary to show that it is possible for the
conditions of this lemma to be satisfied. We do this by presenting an example.

Lemma 2. Let each agent have log utility. If ρJ < ρ1 < . . . < ρJ−1, ρ1 − ρJ >
ρ2−ρ1 and p2(t0)/p1(t0)−y2/y1 < 0 then agent J will eventually prefer to break
away from the J-solution and hold onto his shares consuming the dividend as
he receives it.

Proof. At time τ agent J ’s share holding is given by

θJ(τ) = 1−

∫∞

τ γ̃(t0, u)du

ψ(t0, τ)

and so the condition for J to break away at time τ is

log

(

1−

∫∞

τ
γ̃(t0, u)du

ψ(t0, τ)

)

−

∫ ∞

τ

ρJe
−ρJ (u−τ) log (1− ϕu) du > 0. (17)

We begin by applying Jensen’s inequality to the left-hand-side of (17).

log

(∫∞

τ
γ̃(t0,u)

ϕu
(1− ϕu) du

∫∞

τ
γ̃(t0,u)

ϕu
du

)

−

∫ ∞

τ

ρJe
−ρJ (u−τ) log (1− ϕu) du

>

∫∞

τ
γ̃(t0,u)

ϕu
log (1− ϕu) du

∫∞

τ
γ̃(t0,u)

ϕu
du

−

∫ ∞

τ

ρJe
−ρJ (u−τ) log (1− ϕu) du. (18)

Each of the two terms in (18) is an average of the function log(1 − ϕt). In the
case of log utility the form of the optimal ϕ given by (16) simplifies to

ϕt =

∑

i<J yie
−ρit

e−ρJ t +
∑

i<J yie
−ρit

. (19)

We will look at the expression in (18) for large values of τ . The condition that
ρJ < ρ1 < ρ2 < . . . < ρJ−1 and (19) imply that log(1 − ϕt) is increasing for
large t. We have

γ̃(t0, u)

ϕu
=

(
∑

i<J pi(t0)e
−ρiu

) (

e−ρJu +
∑

k<J yke
−ρku

)

∑

i<J yie
−ρiu

=
p1(t0)e

−ρ1u
(

1 + p2(t0)
p1(t0)

e−(ρ2−ρ1)u + . . .
)

e−ρJu
(

1 +
∑

k<J yke
−(ρk−ρJ )u

)

y1e−ρ1u
(

1 + y2

y1

e−(ρ2−ρ1)u + . . .
)

=
p1(t0)

y1
e−ρJu

{

1 +

(

p2(t0)

p1(t0)
−
y2
y1

)

e−(ρ2−ρ1)u + . . .

}
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for large u, using the condition that ρ1 − ρJ > ρ2 − ρ1 for the final step. After
being normalised, γ̃(t0, u)/ϕu will give a measure that tends to an average of two
exponentials, one with rate ρJ and the other with rate ρJ−ρ1+ρ2, as u tends to
infinity. A comparison of the average of log(1−ϕt) under this measure with the
average of log(1−ϕt) under an exponential measure with rate ρJ depends on the
sign of p2(t0)/p1(t0) − y2/y1. As p2(t0)/p1(t0) − y2/y1 is negative, the average
of an increasing function under the measure generated by γ̃(t0, u)/ϕu will be
greater than its average under an exponential measure of rate ρJ . Therefore we
conclude that in this case J will eventually prefer to break away.

It remains to show that it is possible for the ρi, the pi(t0) and the yi to satisfy
the conditions imposed on them for an optimal ϕt. We do this by presenting an
example where the Lagrange multipliers have been numerically calculated. t0 is
taken to equal 0.

Agent 1 2 3 J
ρ 1.2 1.3 1.9 0.1

θ(0) 0.2 0.25 0.2 0.35
p(0) 1 1.298 1.316
y 1.760 2.417 2.287

In this case J initially prefers to continue with his original choice of ϕt.
However, by time 6 he would benefit from holding onto his shares and consuming
the dividend as he receives it.

Time Payoff from original ϕt Payoff from holding shares
0 −2.241 −3.732
3 −0.1065 −0.1088
6 −0.003403 −0.003378

ϕt decreases to zero and θJ (t) increases to one. However, agent J is always
consuming at a lower rate than he is receiving the dividend. Therefore con-
suming the dividend as he receives it results in an immediate increase in the
consumption rate.

6 Conclusions

We have investigated the impact on a simple market of a large investor who
does not act as a price taker. Traditional approaches to the effect of a large
investor on price have assumed that price is determined by some instantaneous
equalising of supply and demand, but, as Arrow & Kurz [1, p74] have made
clear in a somewhat different context, ‘. . . we may say that it requires the
future to determine the present resource allocation.’ It is such an analysis
we have conducted here, allowing the large investor to choose a future dividend
flow consistent with the current division of the asset among market participants.
This can equally be considered to be the problem facing XYZ plc in its attempts
to take over ABC plc; the bidder must offer each of the existing shareholders
a deal that would leave them no worse off in order to get the offer accepted.
This can be compared with the solution that would obtain if the large agent
simply entered the market, and allowed a global equilibrium to establish itself.
Examples show that the large agent sometimes prefers one, sometimes the other.
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The reason is that when the large agent sets up an agreed deal with the other
agents, he must ensure that they are all no worse off, and even though he may
configure the deal optimally for himself subject to this constraint, in a global
equilibrium, it may turn out that some of the other agents do worse off than
originally, and this may result in the large agent actually preferring the global
equilibrium.

Having decided this, we investigated the viability of the large agent’s optimal
deal in circumstances when there was no enforceability of the deal. It may be
that at all times after the deal is set up, all the agents prefer to continue with
the deal than to go off in a subset and follow their own equilibrium in that
subset. We have only partial results here; we have been able to show that no
coalition of the original pool of agents would ever want to walk out on the deal
that they agreed to, but that circumstances can arise where the large agent
may wish to walk out with his current share holding and consume the output of
that. The chief characteristic of the situation where we were able to show this
‘walk-out’ is that the large agent is very patient. As time increases, his share
of the productive asset increases, as does his consumption stream, but it can be
that his consumption stream at large time is less than the consumption stream
that would accrue from his current holding of shares. This leads him to walk
away.

The analysis of the unenforceable situation is still far from complete and
appears to be difficult; without the rule of law, some of the deals that XYZ
would propose would not be agreed by the ABC, because at some later stage
XYZ would walk away from the deal. This would change the nature of the
optimal solution proposed by XYZ in the first place.

Appendix

Proof of proposition 1

Proof. Assumption (A1) allows the expression for ζ(t0, t) in (4) to be simplified:

ζ(t0, t) = pj(t0)e
−ρjtcj(t)

−R. (20)

Combining this with market clearing (1) gives

ζ(t0, t) = δ̃−R
t γ̃(t0, t). (21)

Substituting this expression for ζ(t0, t) into (6) gives the form of the share
price St in (9). The consumption stream of agent j, given by (12), is found
by eliminating ζ(t0, t) from (20) and (21). The wealth of agent j, given in (7),
simplifies because of the expressions for ζ(t0, t) in (21) and cj(t) in (12):

wj(t) =
1

ζ(t0, t)
Et

∫ ∞

t

δ̃1−R
u

(

pj(t0)e
−ρjuγ̃(t0, u)

R−1
)1/R

du

=
δtϕ

R
t

γ̃(t0, t)

∫ ∞

t

(

pj(t0)e
−ρjuγ̃(t0, u)

R−1
)1/R

ϕ1−R
u eα(u−t)du

=
St

ψ(t0, t)

∫ ∞

t

(

pj(t0)e
−ρjuγ̃(t0, u)

R−1
)1/R

ϕ1−R
u eα(u−t)du

11



To find the share holding of agent j, we calculate the dynamics of the wealth
process of that agent:

dwj(t) =
dSt

ψ(t0, t)

∫ ∞

t

(

pj(t0)e
−ρjuγ̃(t0, u)

R−1
)1/R

ϕ1−R
u eα(u−t)du

+
Stγ̃(t0, t)ϕ

−R
t

ψ(t0, t)

(∫ ∞

t

(

pj(t0)e
−ρjuγ̃(t0, u)

R−1
)1/R

ϕ1−R
u eα(u−t)du

)

dt

−
Stϕ

1−R
t

ψ(t0, t)

(

pj(t0)e
−ρj tγ̃(t0, t)

R−1
)1/R

dt

=
wj(t)

St
(dSt + δtdt)− cj(t)dt

The expression for θj(t) given in (13) follows from this and (3). We also deduce
that no agent holds any bonds at any time.

Proof of lemma 1

We will prove this lemma in the case where the coefficient of relative risk aver-
sion, R, is not equal to one. The log utility case, where R = 1, requires a
separate (but analogous) proof because of the different form of the utility func-
tion.

Proof. Assume R 6= 1. Suppose that A is a subset of the pool in which each
agent prefers the subset equilibrium to the J-solution. The consumption path
that agent j in this subset follows when A breaks away is

c′j(t) =
(pj(τ)e

−ρj t)1/R

γ̃A(τ, t)1/R
δtθA(τ−), t ≥ τ (22)

where

γ̃A(τ, t) =

(

∑

i∈A

(pi(τ)e
−ρit)1/R

)R

, (23)

θA(τ−) =
∑

i∈A

θi(τ−).

The share holding process which leads to this consumption path is

θj(t) =
θA(τ−)1−R

ψA(τ, t)

∫ ∞

t

(

pj(τ)e
−ρju

)1/R
γ̃A(τ, u)

1−1/Reα(u−t)du (24)

where

ψA(τ, t) =

∫ ∞

t

γ̃A(τ, u)θA(τ−)−Reα(u−t)du.

The consumption path cj(t) and share holding process that agents in the pool
follow under the original choice of ϕt are given by (12) and (13). For agent j in
the subset A to prefer the alternative consumption path (22) to that given by
(12) at time τ we need

Eτ

∫ ∞

τ

e−ρju

1−R
c′j(u)

1−Rdu ≥ Eτ

∫ ∞

τ

e−ρju

1−R
cj(u)

1−Rdu

12



which can also be written as

∫ ∞

τ

e−ρju/R+α(u−τ)

1−R

(

pj(τ)
1/R

γ̃(τ, u)1/R
θA(τ−)

)1−R

du

≥

∫ ∞

τ

e−ρju/R+α(u−τ)

1−R

(

pj(t0)
1/R

γ̃(t0, u)1/R
ϕu

)1−R

du.

Our aim now is to show that this inequality leads to a contradiction. The vector
p(τ) is chosen so that θ(t) is continuous at t = τ . This means that (13) and
(24) must be equal when t = τ . Using this, our condition is equivalent to

pj(t0)

(1−R)ψ(t0, τ)
≥

pj(τ)

(1−R)ψA(τ, τ)

or again

pj(t0)

1−R
ψ(t0, τ)

−1

≥
pj(τ)

1− R

(∫ ∞

τ

γ̃A(τ, u)θA(τ)
−Reα(u−τ)du

)−1

. (25)

An expression for θA(τ) can be found from the expressions for θj(t) in (13) and
γ̃A(τ, t) in (23):

θA(τ) =
1

ψ(t0, τ)

∫ ∞

τ

γ̃A(t0, u)
1/Rγ̃(t0, u)

1−1/Rϕ1−R
u eα(u−τ)du.

We can take θA(τ) outside the integral in (25) and use the expression above to
obtain

pj(t0)

1−R

∫ ∞

τ

γ̃A(τ, u)e
α(u−τ)du

≥
pj(τ)

(1−R)ψ(t0, τ)R−1

(∫ ∞

τ

γ̃A(t0, u)
1/Rγ̃(t0, u)

1−1/Rϕ1−R
u eα(u−τ)du

)R

.

As this inequality holds for all j ∈ A, it follows that we must have

(

∑

j∈A (pj(t0)e
−ρjs)

1/R
)R

eα(s−τ)

1−R

∫ ∞

τ

γ̃A(τ, u)e
α(u−τ)du

≥

(

∑

j∈A (pj(τ)e
−ρjs)

1/R
)R

eα(s−τ)

(1 −R)ψ(t0, τ)R−1

(
∫ ∞

τ

γ̃A(t0, u)
1/Rγ̃(t0, u)

1−1/Rϕ1−R
u eα(u−τ)du

)R

for all s ≥ τ . Using the definition of γ̃A in (23), and integrating with respect to
s on the interval [τ,∞), we deduce that

1

1−R

∫ ∞

τ

γ̃A(t0, s)e
α(s−τ)ds

≥
1

(1−R)ψ(t0, τ)R−1

(∫ ∞

τ

γ̃A(t0, u)
1/Rγ̃(t0, u)

1−1/Rϕ1−R
u eα(u−τ)du

)R

.(26)
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From (10), ψ(t0, τ) can be written as

ψ(t0, τ) =

∫ ∞

τ

γ̃A(t0, u)
1/Rγ̃(t0, u)

1−1/Rϕ1−R
u eα(u−τ)

(

γ̃(t0, u)
1/R

γ̃A(t0, u)1/Rϕu

)

du.

Substituting this expression for ψ(t0, τ) into (26) and rearranging gives

1

1−R

∫∞

τ γ̃A(t0, u)
1/Rγ̃(t0, u)

1−1/Rϕ1−R
u eα(u−τ)

(

γ̃(t0,u)
1/R

γ̃A(t0,u)1/Rϕu

)1−R

du
∫∞

τ
γ̃A(t0, u)1/Rγ̃(t0, u)1−1/Rϕ1−R

u eα(u−τ)du

≥
1

1−R





∫∞

τ
γ̃A(t0, u)

1/Rγ̃(t0, u)
1−1/Rϕ1−R

u eα(u−τ)
(

γ̃(t0,u)
1/R

γ̃A(t0,u)1/Rϕu

)

du
∫∞

τ γ̃A(t0, u)1/Rγ̃(t0, u)1−1/Rϕ1−R
u eα(u−τ)du





1−R

.

Jensen’s inequality tells us that the reverse inequality is also true, and so we
must in fact have equality. This is only possible when

ϕt = k
γ̃(t0, t)

1/R

γ̃A(t0, t)1/R

= k

∑

i<J pi(t0)
1/Re−ρit/R

∑

i∈A pi(t0)
1/Re−ρit/R

(27)

for some positive constant k. For ϕt to lie in the range [0, 1] it is necessary
that k < 1. We are able to show that this form of ϕt contradicts that given
in (16) by looking at the behaviour when t tends to infinity. If agent 1 is not
in the subset A then (27) implies that ϕt tends to infinity as t increases, which
contradicts (16) where ϕt is always in the range [0, 1]. If agent 1 is in subset A
then according to (16), ϕt tends to k and so

(

ϕt

1− ϕt

)R

−→

(

k

1− k

)R

.

By rearranging (16) we find that

(

ϕt

1− ϕt

)R

=

∑

i<J yie
−ρit/Rpi(t0)

(1−R)/ReρJ t

(
∑

i<J pi(t0)
1/Re−ρit/R

)1−R

−→ y1e
(ρJ−ρ1)t

and as ρJ 6= ρ1 we have a contradiction.
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