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In this short note, we describe the pricing of an American option (call or put) on a share

which may pay continuous dividends, using a method described by Broadie & Detemple

[2] as ‘not very elegant’. The method is simply to build a look-up table of option prices,

which thus splits the problem of pricing American option prices into three sub-problems:

(A) accurate calculation of the values in the table;

(B) storage of the table, and access to it;

(C) rapid calculation of prices for given parameter values.

The most important problems are clearly B and C; in principle, we may take as long as

necessary to fill up the table, since this calculation is done off-line, once only. Any of the

methods discussed elsewhere in this volume by Broadie & Detemple [2] and by Ait-Sahalia

& Carr [1] could be used to compute the values in the table. We used the binomial method

with 5000 time steps using Black-Scholes in the last step, as recommended by Broadie &

Detemple.

It is worth remarking that by computing and storing the table of values, we are able

to calculate greeks, and the exercise boundary with relatively little extra cost; this is a

valuable advantage of this inelegant approach.

To describe the storage problem, let us first state the parametrisation which we used. The

price of an American put option written on a share paying continuous dividends at rate

δ is

P (S0, K, r, σ, T, δ) ≡ sup
0≤τ≤T

E[(Ke−rτ − S0e
σW (τ)−(δ+σ2/2)τ )+],

where T is the expiry of the option, τ is a stopping time with values in [0, T ], K is

the strike price, S0 is the price of the share at time 0, and σ is the volatility of the

share returns. Though the price ostensibly depends on six parameters, we can reduce the

problem somewhat by rewriting

P (S0, K, r, σ, T, δ) = sup
0≤τ≤σ2T

E[(Ke−rσ−2τ − S0e
W (τ)−(δσ−2+(1/2))τ )+]

≡ P (S0, K, rσ−2, 1, σ2T, δσ−2)

= KP (S0/K, 1, rσ−2, 1, σ2T, δσ−2)

≡ Kp(S0/K, rT, σ2T, δT ),

say; thus there are effectively only four parameters of the problem, S0/K, σ2T , rT , and

δT . We therefore only have to store a four-dimensional table, which is feasible. In fact,

1Published in the Proceedings of the Numerical Methods Workshop at the Isaac Newton Institute,

April 1995, eds L C G Rogers and D Talay, Cambridge University Press, 1997

1



the ranges we took were:

S/K [ 0.7 , 1.3 ] T [0.003, 1.0 ]

r [0.01,0.10] σ [ 0.03 ,0.60]

δ [0.00,0.10]

There are many practical difficulties in the construction of such a look-up table. Close

to the exercise boundary the option pricing function p changes very rapidly, and at the

exercise boundary its second derivative is large. Interpolating in intervals that straddle the

exercise boundary causes larger errors. For this reason the exercise boundary is pinpointed

accurately for the S/K grid lines while the table is constructed, and its position stored in

a separate table. Furthermore S/K is confined to values where options have a significant

value, i.e. are bigger than 10−5. Consequently the grid spacing decreases when the option

has a short running time — this is essential to obtain reasonable estimates for short

maturities.

The grid spacing for δT is fixed, but for every grid point in the δT dimension bounds for

rT are determined, so that only the range of parameters that are of interest are covered.

The reason is that choosing δT , and having a fixed range for δ imposes restrictions on

the values for T that have to be considered. The same is true for the grid for σ
√
T . This

simple optimisation reduces the size of the table roughly by half.

We also experimented with non-equidistant grids in order to have more points in regions

where T is assumed to be small, but the slight improvement in precision did not seem

to justify the additional complication in accessing the table and interpolating the option

prices.

For the results presented here, a table with 21 points in the T and S/K dimensions and

16 points in the δ and σ dimensions is used. The total amount of space required to store

this was 0.94 MB, which is quite acceptable (it easily fits on a single floppy disc).

It is possible to use so little storage only because we use judicious choice of grids and

a polynomial interpolation method. There are various interpolation schemes well known

in numerical analysis; we used a modified Neville interpolation. For an account of the

method, see, for example, the book by Stoer [3].

For the interpolation 4 points are used in every grid dimension, giving a total of 256 points.

Heuristics are use to exclude some points if they are outside the exercise boundary. If the

option price is not close to the exercise boundary and has a long maturity, quite acceptable

results can be achieved using only quadratic or even linear interpolation. In the results

reported here the interpolation is not optimised to choose the number of interpolation

points dynamically.

Table displays results for short term puts with a strike price of $100 and no dividends.

Here S is the stock price, T the expiry of the option, σ the volatility and r the risk-

free interest rate. The results in the ‘Binomial’ column were calculated with a 5000-step
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S T σ r Binomial Look-Up Rel. Err. Abs. Err.

($) (Years) (%) (%) ($) ($)

80 0.500 40 6 21.6057 21.6057 0.0000 0.0000

85 0.500 40 6 18.0370 18.0368 0.0000 0.0002

90 0.500 40 6 14.9178 14.9178 0.0000 0.0000

95 0.500 40 6 12.2306 12.2303 0.0000 0.0003

100 0.500 40 6 9.9448 9.9454 -0.0001 -0.0006

105 0.500 40 6 8.0265 8.0267 0.0000 -0.0003

110 0.500 40 6 6.4337 6.4339 0.0000 -0.0002

115 0.500 40 6 5.1257 5.1253 0.0001 0.0003

120 0.500 40 6 4.0602 4.0601 0.0000 0.0001

100 0.500 40 2 10.7734 10.7739 0.0000 -0.0005

100 0.500 40 4 10.3441 10.3447 -0.0001 -0.0006

100 0.500 40 6 9.9448 9.9454 -0.0001 -0.0006

100 0.500 40 8 9.5707 9.5712 -0.0001 -0.0005

100 0.500 40 10 9.2186 9.2191 0.0000 -0.0005

100 0.500 30 6 7.2110 7.2114 -0.0001 -0.0004

100 0.500 35 6 8.5774 8.5779 -0.0001 -0.0005

100 0.500 40 6 9.9448 9.9454 -0.0001 -0.0006

100 0.500 45 6 11.3116 11.3123 -0.0001 -0.0006

100 0.500 50 6 12.6767 12.6774 -0.0001 -0.0007

100 0.083 40 6 4.3732 4.3743 -0.0003 -0.0012

100 0.167 40 6 6.0716 6.0718 0.0000 -0.0002

100 0.250 40 6 7.3070 7.3074 -0.0001 -0.0004

100 0.333 40 6 8.3149 8.3154 -0.0001 -0.0005

100 0.417 40 6 9.1869 9.1874 -0.0001 -0.0005

100 0.500 40 6 9.9448 9.9454 -0.0001 -0.0006

100 0.583 40 6 10.6247 10.6253 -0.0001 -0.0006

100 0.667 40 6 11.2500 11.2506 -0.0001 -0.0006

100 0.750 40 6 11.8172 11.8178 -0.0001 -0.0006

100 0.833 40 6 12.3424 12.3430 -0.0001 -0.0006

100 0.917 40 6 12.8374 12.8380 -0.0001 -0.0007

Seconds Per Put : 0.00027

Mean Relative Error
(

1
n

∑

ǫi
)

: -0.000045

Root mean square error
(√

1
n

∑

ǫ2i
)

: 0.000068

Mean Absolute Relative Error
(

1
n

∑ |ǫi|
)

: 0.000053

Maximum Relative Error (max |ǫi|) : -0.000263

Maximum Absolute Error (max |pi − p̂i|) : 0.001150

(Here n = 30, pi=Binomial price, p̂i=Lookup Table price, ǫi =
pi−p̂i
pi

)
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binomial tree, using Black-Scholes in the last step. The relative and absolute errors are

given in the last two columns.

Even in a first implementation, this method can price around 3000 options per second

with high accuracy. We used a similar test to Broadie & Detemple for 5000 options, with

parameters chosen independently from a uniform distribution, such that:

K 100 S [ 70 ,130 ]

T [0.1, 1.0 ] r [0.01,0.10]

σ [0.1,0.60] δ [0.00,0.10]

We follow them in rejecting options with a price less then 0.005, which left 4687 option

prices; we similarly define dhe relative error as ǫ = (p − p̂)/p, where p is the put price

calculated with a 5000-step binomial algorithm, using Black-Scholes in the last step, and p̂

is the price obtained from the look-up table. The relative root-mean-square error (RMS)

is then defined as
√

√

√

√

1

n

∑

(

p− p̂

p

)2

.

With the look-up table defined above, the relative root-mean-square error was 0.001001,

and the maximum relative error (chosen such that 99.5% of the observations have smaller

errors) was −0.006011. Warnings are issued for options for which the enclosing cube in the

(δT, rT, σ
√
T ) space (8 points) contains points which are outside the exercise boundary.

Ignoring options for which warnings are issued halved the relative root-mean-square error

(RMS=0.000553) and reduces the relative maximum error to 0.003394.

Table shows results similar to those presented by Ait-Sahalia & Carr. For this parameter

set the lookup method compares favourably with any of the direct calculation methods.

The fact that no dividends are present is not taken into account explicitly, so that 256

instead of only 64 points are used in this calculation. Taking this into account would

reduce the computation time significantly.

The current implementation is still far from optimal, and could easily be speeded up.

Currently 89 calls to a Neville-interpolation routine are made during every look-up, and

this routine could be in-lined and tailored to the problem. A more important optimisation

would be to dynamically change the number of points used for the interpolation.

The accuracy can be increased by choosing a larger grid, which comes at the cost of higher

memory usage, or by splitting the domain and using a finer grid for short maturities. For

particularly difficult cases, such as when some of the interpolation points lie outside the

exercise boundary, or the life-span is very short, it is always possible to fall back on a

slower direct calculation.

Conclusions.

The results in this note demonstrate the feasibility of using look-up tables for pricing
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American options with continuous dividends. It turns out that organising the look-up

table to (i) restrict it to an acceptable size, and (ii) to get high accuracy, is harder than

might have been thought. A key factor for the accuracy is to take explicitly into account

that the price function changes very rapidly at the exercise boundary. Accessing the table

has to be thought out carefully, and cubic polynomial interpolation is used to maintain

accuracy. The American put is fundamentally quite a simple option, and we find that the

look-up table is broadly comparable in speed and accuracy with the best of the methods

discussed elsewhere in this volume. If we were now to envisage the pricing of an American

put where the assumption of a constant interest rate were to be replaced by a Vasicek

model for the interest rate, the various methods used elsewhere are going to suffer badly,

whereas the look-up approach is still as good; filling the look-up table will of course take

much longer, but once it is filled, the interpolation method will give the same sort of speed

as we have found here (thousands of options per second). In addition to its speed, a key

advantage of look-up tables is that the greeks can be estimated very cheaply.

References

[1] AitSahalia, F. & Carr, P. American options: a comparison of numerical methods. This

volume.

[2] Broadie, M. & Detemple. J. Recent advances in numerical methods for pricing

derivative securities. This volume.
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