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1. Introduction. Let (Xt)t≥0 be a continuous-time irreducible Markov chain with finite

statespace E and define the continuous additive functional

ϕt ≡ εBt +

∫ t

0

v(Xs)ds

of (X,B), where (Bt)t≥0 is a Brownian motion independent of X , and v : E → R. We

define the time-changes

τ±t ≡ inf{u : ±ϕu > t}

and the time-changed processes

Y ±
t ≡ X(τ±t ).

The processes Y ± will again be Markov chains on the statespace E. The case of no noise

(ε = 0) is the original case studied by Barlow, Rogers & Williams [2]; Y + (respectively,

Y −) will be a Markov chain in E+ ≡ {i : v(i) > 0} (respectively, E− ≡ {i : v(i) < 0}) and

the generators of Y ± are characterised in [2] as the solution of a certain matrix equation,

which can seldom be solved in closed form.

Latterly, however, the case ε 6= 0 has been investigated by Kennedy & Williams

[4]; here, the generators Γ± of Y ± are characterised as the unique solutions in Q(E) ≡

{E × E matrices A :
∑

j aij ≤ 0 ∀i, aij ≥ 0 ∀i, j} of the matrix equations

1
2
ε2Γ2

+ − V Γ+ +Q = 0(1.1i)

1
2
ε2Γ2

− + V Γ− +Q = 0(1.1ii)

where V = diag (v(i)). It should be noticed that in the case ε 6= 0, the processes Y ± can

take values anywhere in E, not just in E±

In a sequel to Barlow, Rogers & Williams [2], London, McKean, Rogers & Williams

[6] obtained the Wiener-Hopf factorisation of the reversal of the original chain in the case

ε = 0, by matrix manipulation of the fundamental Wiener-Hopf factorisation of [2]. Our

goal in this paper is to characterise the Wiener-Hopf factorisation of the reversal of X in
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the noisy case (ε 6= 0). One would expect that this would be done by taking (1.1i-ii) and

performing various matrix operations. However, though such a proof may well exist, no

such proof has yet been found, and the proof given here is by way of excursion theory!

To state the result, we need a little notation. Letm denote the invariant distribution

of X thought of as a row vector, and let M ≡ diag (mi). When we reverse X , we see a

chain with generator Q̂ ≡ M−1QTM , where Q is the generator of X . We shall also make

the convention that the fluctuating additive functional ϕ̂ by which we time-change X̂ will

be

ϕ̂t = εB̂t −

∫ t

0

v(Xs)ds,

that is, we replace v by −v. The point of this is the following. If we make the assumption

(1.2)
∑

i

mivi > 0,

then if we draw a sample-path of (ϕt)t∈R, where we suppose that (Xt)t∈R is in equilibrium,

and B is defined also for negative time by Bt = W−t, (t ≤ 0) for some independent

Brownian motion W , then ϕ0 = 0, ϕt → ∞ as t → ∞, and we can visualise the reversal

in the same picture, just by taking t decreasing; indeed, we have simply that

X̂t = X−t, ϕ̂t = ϕ−t.

The use of this picture is an essential ingredient of the proof. We shall make assumption

(1.2) from now on. Nothing is changed if we were to assume instead thatmV 1 ≡
∑

i mivi <

0, the only problem is to rule out the balanced case mV 1 = 0; we say a little more on this

below. The main result is the following.

THEOREM. Assume (1.2). The generators Γ̂± of the noisy Wiener-Hopf factorisation of

the reversed chain X̂ are related to the generators Γ± of the Wiener-Hopf factors of the

forward chain by

(1.3) Γ̂± = M−1((Γ+ + Γ−)Γ∓(Γ+ + Γ−)
−1)TM.

Remarks (i) It is far from obvious that the expression on the right-hand side of (1.3) is a

Q-matrix.

(ii) Under assumption (1.2), Γ− is a transient Q-matrix, so Γ+ + Γ− is also a transient

Q-matrix. In the balanced case mV 1 = 0, the Q-matrix Γ+ +Γ− would not be invertible.

(iii) Abbreviating

Γ+ + Γ− ≡ 2J, Γ̂+ + Γ̂− ≡ 2Ĵ ,
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we see from (1.3) that Ĵ = M−1JTM , and so it is immediate that the reversal of the

reversal is the original.

(iv) The balanced case mV 1 = 0 could be approached from the unbalanced case by ap-

proximation, but this seems unsatisfactory. It is worth remarking that the reversal in the

noiseless case calculated in [6] was also obtained under the assumption (1.2).

The use of the Wiener-Hopf factorisation of Markov chains has important appli-

cations in the theory of fluid models of queues. Rogers [8] explains the connections, and

Rogers & Shi [9] discuss efficient numerical methods. See also Asmussen [1] for the use

of reversals in computing invariant measures for fluid models, and Gaver & Lehoczky [3],

Lehoczky & Gaver [5] for examples where the noisy Wiener-Hopf factorisation is required.

2. Proof of the Theorem. The proof proceeds via four simple propositions, of indepen-

dent interest. Recall that we assume
∑

i mivi > 0.

PROPOSITION 1. The invariant measure of Γ+ is (proportional to) mJ .

Proof. Left-multiply (1.1) by the row-vector m to learn that

1
2
ε2mΓ2

+ −mV Γ+ = 0

1
2
ε2mΓ2

− +mV Γ− = 0.

Since Γ− is invertible, one has then −mV = 1
2
ε2mΓ− and thence

m(Γ+ + Γ−)Γ+ ≡ 2mJΓ+ = 0.

�

The process ϕ is a semimartingale, and a continuous additive functional of (X,B). It has

a local time process (L(t, a))t≥0 at each level a ∈ R which we may and do assume to be

jointly continuous, because of Trotter’s theorem and the local equivalence of the laws of ϕ

and εB. If τ(t, a) ≡ inf{u : L(u, a) > t}, we define for each a a process

ξ(t, a) ≡ X(τ(t, a))

which it is not hard to see must be a Markov chain on E ∪ {∂}, where ∂ is a graveyard

state to which ξ is sent once τ(·, a) reaches ∞, as it eventually must.

PROPOSITION 2. For each a ∈ R, the generator of ξ(·, a) is

(

E ∂

E J −J1

∂ 0 0

)
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where 1 is the column vector of 1’s.

Proof. In terms of local time at a, the rate at which excursions of ϕ happen, which start

when ϕ = a and X = i, rise from the level ϕ = a and return to ϕ = a when X is in state

j 6= i is

(2.1) lim
ε↓0

1

2ε
P
[

Y −
ε = j|Y −

0 = i
]

= 1
2
Γ−(i, j).

In more detail, the rate of Brownian excursions which rise at least ε from that level is

(2ε)−1 (Rogers & Williams [7] VI.51.2) and for a Brownian motion with constant drift, the

rate of excursions which rise at least ε is asymptotically equivalent to (2ε)−1 ([7], VI.55).

Once the excursion of ϕ has risen ε, the probability that ϕ gets back down to the starting

level but with X having changed state to j is εΓ−(i, j) + o(ε), from which (2.1) follows.

Note that we may ignore the possibility that X changes in the time taken for the excursion

to rise to ε, since this time is O(ε2), because the initial part of the Brownian excursion is

a BES(3) process ([7], VI.55.11). The downward excursions of ϕ are treated similarly, and

the result follows. �

The next step is to consider what happens when we time-change the process (ϕ,X)

by L(·, 0) + L(·, a), where a > 0. We once again see a Markov chain, on the statespace

E0 ∪ Ea ∪ {∂}, where Eb ≡ {b} × E, b = 0, a; the process spends a finite time in E0 ∪ Ea

and then jumps to the graveyard state ∂ where it remains for ever.

PROPOSITION 3. The generator of the chain on E0 ∪ Ea ∪ {∂} is

(2.2)







E0 Ea ∂

E0 JK+(a) −JK+(a)e
aΓ+ 0

Ea −JK−(a)e
aΓ

− JK−(a) −J1

∂ 0 0 0







where

K±(a) ≡ (I − exp(aΓ±) exp(aΓ∓))
−1.

Proof. The chain viewed only in E0 ∪ Ea is transient, and has Green’s function given by

the matrix
(

I eaΓ+

eaΓ− I

)(

−J−1 0
0 −J−1

)

.

Thus the restriction of the generator to E0∪Ea is simply the negative of the inverse of this

matrix. Routine calculations yield the appropriate submatrices of (2.2). Once the chain

reaches ∂, it never leaves, which is why the bottom row of (2.2) is zero. Since ϕ drifts
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upwards, it is impossible to jump from E0 to ∂. In order to make the row sums in the Ea

part of the matrix zero, we must make the Ea × ∂ submatrix equal to

JK−(a)e
aΓ

−1− JK−(a)1 = JK−(a)(e
aΓ

−eaΓ+ − I) = −J1,

since exp(aΓ+) is stochastic. �

PROPOSITION 4. For each a ∈ R, define

σa ≡ sup{t : ϕt = a}.

Then

(2.3) P (X(σ0) = j,X(σa) = k|X0 = i, ϕ0 = 0) = −J−1(i, j)(JeaΓ+J−1)(j, k)(−J1)k.

Proof. Abbreviating the Q-matrix (2.2) to







E0 Ea ∂

E0 Z00 Z0a 0

Ea Za0 Zaa Za∂

∂ 0 0 0






,

and decomposing according to the number of crossings from 0 to a, we see that

P (X(σ0) = j,X(σa) = k|X0 = i, ϕ0 = 0)

=
∑

n≥0

(−Z−1
00 Z0a(−Zaa)

−1Za0)
n(−Z00)

−1(i, j)Z0a(−Zaa)
−1(j, k)Za∂(k)

= −(I − Z−1
00 Z0aZ

−1
aa Za0)Z

−1
00 (i, j)Z0a(−Zaa)

−1(j, k)Za∂(k)

= −(I − eaΓ+eaΓ−)−1Z−1
00 (i, j)(JeaΓ+J−1)(j, k)(−J1)k

= −J−1(i, j)(JeaΓ+J−1)(j, k)(−J1)k.

This is what we wanted. �

We may now assemble all this, by mixing over the state i of X0 in (2.3), according

to the invariant law of Γ+, which is ν ≡ cmJ , from Proposition 1 (here, c ≡ (mJ1)−1.)

This gives

P (X(σ0) = j,X(σa) = k) = −cmj(Je
aΓ+J−1)(j, k)(−J1)k.

Summing over j yields the useful information that

P (X(σa) = k) = P (Ŷ −
0 = k) = cmk(J1)k,
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and from this
P (X(σ0) = j|X(σa) = k)

= P (Ŷ −
a = j|Ŷ −

0 = k)

= mj(Je
aΓ+J−1)(j, k)/mk.

From this, the asserted form of Γ̂− follows immediately.

Finally, we need to find the reversal Γ̂+. The proof is structurally similar, except that now

if we set γa ≡ sup{t < σ0 : ϕt = a}, for any a > 0, we have to calculate

P (X(σ0) = k,X(γa) = j|X0 = i, ϕ0 = 0)

=
∑

n≥0

(Z−1
00 Z0aZ

−1
aa Za0)

n(Z−1
00 Z0aZ

−1
aa )(i, j)(−Za0Z

−1
00 )(j, k)Z0a(−Z−1

aa )Za∂(k)

= (I − Z−1
00 Z0aZ

−1
aa Za0)

−1Z−1
00 Z0aZ

−1
aa (i, j)(Za0Z

−1
00 )(j, k)Z0aZ

−1
aa Za∂(k)

= (−eaΓ+J−1)(i, j)(−JeaΓ−J−1)(j, k)(J1)(k).

Mixing now over i with law ν yields

P (X(σ0) = k,X(γa) = j) = cmj(Je
aΓ

−J−1)(j, k)(J1)k.

Hence finally

P (X(γa) = j|X(σ0) = k) = mj(Je
aΓ

−J−1)jk/mk,

as claimed.

Remarks. (i) We now have an entirely probabilistic proof of this result, but, since it is a

statement phrased entirely in terms of finite matrices, one suspects that there must be a

proof entirely in terms of finite matrices. None is yet known. Indeed, even if one could

somehow verify that Γ̂± defined by (1.3) satisfied (the reversed form of ) (1.1), it is far

from obvious that Γ̂± ∈ Q(E), so the identification of these as the reversed generators is

not complete.

(ii) We see here an example of the addition of two generators. There seems to be no natural

probabilistic interpretation of this operation.
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