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Abstract: In this paper, we present a general method for computing (the Laplace

transform of) the distribution of a very general quadratic functional of Brownian mo-

tion. The method is based on solving an equivalent problem of linear deterministic

control (the “linear regulator”), and reduces to the well-known Riccati equation. We

illustrate the method by solving completely a complicated example which appears to

be intractable by other means.
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1. Introduction

Recently, there has been renewed interest in the calculation of the law of quadratic

functionals of Brownian motion (and Gaussian processes), as is exemplified by the

problem of computing

(1) E exp

[

−θ
2

2

∫ 1

0

(Bs −B)2ds

]

,

where B ≡
∫ 1

0
Bsds is the centre-of-mass of the Brownian path (Bt)0≤t≤1. This is

a problem of interest in polymer physics, where it arises from the conformation of a

polymer in a pure straining flow. Although the polymer is a three-dimensional object,

its moment of inertia splits into the sum of three independent contributions, thus

reducing the problem to a one-dimensional setting. The one-dimensional case has

received much attention (see, for example, Donati-Martin & Yor [4], Chan, Dean,

Jansons & Rogers [3]), but our interest here was to extend if possible to genuinely

multidimensional examples. The paper of Chan, Dean, Jansons & Rogers [3] makes

clear the importance of excursion ideas and the Ray-Knight theorem in solving one-

dimensional examples, and we wanted to find out whether these methods might work

in higher dimensions, or, if not, what would be viable substitutes. To guide us in this,
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we took a test example and analysed it completely with bare-hands techniques; the end

results bore no interpretation in terms of excursion theory or any other probabilistic

object as far as we could see. The test problem we set ourselves was to compute

(2) E exp

[

−θ
2

2

∫ 1

0

XT
uKuXudu

]

,

where X is a Brownian motion in R2, and Kt is the matrix

(3) Kt ≡
(

cosωt
sinωt

)(

cosωt
sinωt

)T

,

with ω > 0 a fixed parameter. We shall present a very general methodology for com-

puting things like (2), which certainly includes all examples where X is BM(Rn) and

K is n×n, symmetric, continuous. The methodology is easy to implement numerically

(closed-form solutions appear to be the exception); in fact, the problem we solve is

equivalent to one which has been much studied in optimal control for years!

To explain how the method works, define

(4) p(t, x) ≡ E

[

exp

(

−1

2

∫ 1

t

XT
uKuXudu

)

| Xt = x

]

,

where X is BM(Rn), K is n × n symmetric, non-negative definite (though this last is

not essential). Then

exp

(

−1

2

∫ t

0

XT
uKuXudu

)

p(t, Xt) is a martingale,

from which Itô’s formula gives

(5)
1

2
∆p+ ṗ− 1

2
xTKtxp = 0, p(1, x) ≡ 1.

It is easy to guess the form of the solution to (5); if we try

(6) p(t, x) = exp

[

−1

2
xTQtx− γt

]

,

then we find that if Q and γ solve

Q2
t − Q̇t −Kt = 0,(7.i)

γ̇t = −1

2
trQt,(7.ii)
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with initial conditions Q1 = 0, γ1 = 0, then (6) is indeed the solution. Thus computing

p is equivalent to finding Q to solve the matrix Riccati equation (7.i). In §2, we prove

the relationship between the law of a quadratic functional of a Gaussian process and the

solution of an optimisation problem. This result is then specialised to the Brownian

motion setting. A major advance here is that one does not need the Ray-Knight

theorem or excursion theory to compute the laws of quadratic functionals.

The appearance of the matrix Riccati equation in the computation of the laws

of quadratic functionals of Brownian motion turns out to be quite ancient; the one-

dimensional case first appears, to our knowledge, in a paper of Cameron & Martin

[2] in 1945, and the method has appeared sporadically in the literature since (see, for

example, Kac [5], Liptser & Shiryaev [8] p.280). The point of view adopted in these

references is to take a change-of-measure martingale

dZt = −ZtX
T
t QtdXt

which is solved by

Zt = exp

[

−
∫ t

0

XT
uQudXu − 1

2

∫ t

0

| QuXu |2 du
]

;

this, by Itô’s formula, is equal to

= exp

[

−1

2
XT

t QtXt +
1

2
XT

0 Q0X0 −
1

2

∫ t

0

XT
u (Q

2
u − Q̇)Xudu+

1

2

∫ t

0

tr Qudu

]

.

Now, it can be seen that if Q solves (7.i), then the law of the quadratic functional is

indeed given by

E exp

(

−1

2

∫ 1

0

XT
uKuXudu

)

= exp

(

−1

2

∫ 1

0

tr Qudu

)

.

This approach is, of course, mathematically equivalent to the one we outlined above,

but neither is satisfying in the sense that they solve the problem without explaining the

connection with the classical mathix Riccati equation of optimal control. We provide

such an explanation in §2.

In §3, we consider the optimal control problem related to our test example.

Prisoners-of-war trying to escape from Colditz castle have to cross an open field before

reaching the safety of woodland. In the middle of this field there is a searchlight which

from time to time is turned on, and then sweeps slowly round the field with angular

velocity ω. If it is turned on while an escaper is crossing the field, his comrades arrange

a diversion, which takes effect in T seconds time. Until then, however, the escaper must
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evade detection. The faster he moves, the easier it is to avoid the searchlight beam,

but the more noise he makes, thus increasing his chances of being detected. If he starts

at position x ∈ R2 and follows trajectory (xt)0≤t≤T , we suppose his chances of being

caught are

exp

[

−1

2

∫ T

0

(θ2xTuKuxu+ | ẋu |2)du
]

,

where K is given by (3). Thus the escaper has to solve the optimisation problem

min

∫ T

0

(θ2xTuKuxu+ | ẋu |2)du, x0 = x.

In §3 we give the explicit closed-form solution to this optimisation problem; any prisoner

who could solve it in real time would deserve to escape with his life, freedom and a

Fields Medal!

We remark straight away that the test example (2)-(3) was not chosen arbitrarily,

nor for its relevance to real life. It is a natural example to choose because we know two

limits:

lim
ω→0

E exp

(

−θ
2

2

∫ 1

0

XT
uKuXudu

)

= E exp

(

−θ
2

2

∫ 1

0

(X1
u)

2du

)

= (cosh θ)−1/2;(8)

and

lim
ω→∞

E exp

(

−θ
2

2

∫ 1

0

XT
uKuXudu

)

= E exp

(

−θ
2

4

∫ 1

0

{(X1
u)

2 + (X2
u)

2}du
)

= (cosh(θ/
√
2))−1.(9)

(See, for example, Karatzas & Shreve [6] p.434). These identities provide us with two

checks on our answer.

2. Quadratic functionals and optimal control

The starting point for the analysis is the following elementary result (the “Fundamental

Theorem of Statistics”!), which featured largely in Chan, Dean, Jansons & Rogers [3].
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Lemma 1. Let X be a Gaussian random vector in Rd with mean 0 and covariance V ,

and let S be a non-negative definite symmetric matrix. Then for any a ∈ Rd,

(10) E exp{−1

2
(X + a)TS(X + a)} = det(I + SV )−1/2 exp{−1

2
aT (I + SV )−1Sa}.

It is once again elementary to confirm that

(11) aT (I + SV )−1Sa = min
x

{(x+ a)TS(x+ a) + xTV −1x},

so that (10) can be re-expressed as

(12) E exp{−1

2
(X + a)TS(X + a)}

= E exp(−1

2
XTSX) exp[−1

2
min
x

{(x+ a)TS(x+ a) + xTV −1x}].

The examples we have in mind are formally similar to (10)-(12) if we replace the Hilbert

space Rd with L2([0, 1]), take the quadratic functional

(x, Sx) ≡ θ2
∫ 1

0

xTuKuxudu,

and write, in place of the log-likelihood −1
2x

TV −1x of the Gaussian law on Rd, the

log-likelihood of Wiener measure on C([0, 1]), namely

−1

2

∫ 1

0

| ẋu |2 du.

(Of course, this is only a heuristic; but, as always, it leads us to a correct result which is

easy to prove rigorously by other means.) We continue to assume such differentiability

as we need until the statement and proof of Theorem 1. Thus we expect that if a is

some deterministic bounded measurable function, then for each t ∈ [0, 1],

E

[

exp

{

−1

2

∫ 1

t

(Xu + au)
TSu(Xu + au)du

}

| Xt = x

]

= E

[

exp

{

−1

2

∫ 1

t

(Xu + x+ au)
TSu(Xu + x+ au)du

}

| Xt = 0

]

= E

[

exp

(

−1

2

∫ 1

t

XT
u SuXudu

)

| Xt = 0

]

× exp

[

−1

2
min
yt=0

{
∫ 1

t

[(yu + x+ au)
TSu(yu + x+ au)+ | ẏu |2]du

}]

= E

[

exp

(

−1

2

∫ 1

t

XT
u SuXudu

)

| Xt = 0

]

exp

{

−1

2
(x+ bt)

TQt(x+ bt)− ψt

}

,(13)
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for some non-negative definite n× n matrix Qt, n-vector bt, and scalar ψt;

(14) = exp

{

−1

2
(x+ bt)

TQt(x+ bt)− ψt − ρt

}

,

where we have defined ρt by

ρt ≡ − logE

[

exp

(

−1

2

∫ 1

t

XT
u SuXudu

)

| Xt = 0

]

;

and we also suppose b is C1 near to 1. There would be two consequences if this were

true. Firstly, if we set

(15) V (t, x) ≡ exp

{

−1

2
(x+ bt)

TQt(x+ bt)− ψt − ρt

}

,

then

Mt ≡ E

[

exp

{

−1

2

∫ 1

0

(Xu + au)
TSu(Xu + au)du

}

| Ft

]

= exp

{

−1

2

∫ t

0

(Xu + au)
TSu(Xu + au)du

}

V (t, Xt)(16)

is a martingale, and hence, by Itô’s formula,

1

2
∆V (t, x) + V̇ (t, x)− 1

2
(x+ at)

TSt(x+ at)V (t, x) = 0,

or again,

(17)
1

2
(x+ bt)

TQ2
t (x+ bt)−

1

2
trQt −

1

2
(x+ bt)

T Q̇t(x+ bt)

−ḃTt Qt(x+ bt)− ψ̇t − ρ̇t −
1

2
(x+ at)

TSt(x+ at) = 0,

using the form (15). Considering the terms quadratic in x, we deduce that

(18) Q2
t − Q̇t − St = 0,

with the obvious boundary condition Q1 = 0. Next, if we consider the terms linear in

x, we learn that
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Q2
t bt − Q̇tbt −Qtḃt − Stat = 0,

or using (18) we can re-express this as

(19) Qtḃt + St(at − bt) = 0,

with the boundary condition b1 = a1 (since Q1 = 0 and ḃt remains bounded near 1 by

assumption). Finally, considering the constant term in (17) yields

1

2
bTt Q

2
t bt −

1

2
trQt −

1

2
bTt Q̇tbt − ḃTt Qtbt − ψ̇t − ρ̇t −

1

2
aTt Stat = 0,

which can be reduced (using (18) and (19)) to

1

2
trQt + ψ̇t + ρ̇t +

1

2
(bt − at)

TSt(bt − at) = 0.

Thus, if we can find Q, b and ψ + ρ to satisfy

Q2
t − Q̇t − St = 0, Q1 = 0;(20.i)

Qtḃt + St(at − bt) = 0, b1 = a1;(20.ii)

1

2
trQt + ψ̇t + ρ̇t +

1

2
(bt − at)

TSt(bt − at) = 0, ψ1 + ρ1 = 0,(20.iii)

then the process M defined by (16) and (15) is a martingale, and V (t, x) has indeed

the interpretation

V (t, x) = E

[

exp

{

−1

2

∫ 1

t

(Xu + au)
TSu(Xu + au)du

}

| Xt = x

]

.

The second consequence, if (13) were true, would be that, since

min
yt=x

∫ 1

t

{

1

2
(yu + au)

TSu(yu + au) +
1

2
| ẏu |2

}

du =
1

2
(x+ bt)

TQt(x+ bt) + ψt,

we should have

(21) f(t) ≡
∫ t

0

{

1

2
(xu + au)

TSu(xu + au) +
1

2
| ẋu |2

}

du+
1

2
(xt+bt)

TQt(xt+bt)+ψt
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is non-decreasing whatever the path (xt)0≤t≤1, and is constant if x is the path min-

imising the cost functional. Differentiating f , we obtain (dropping the subscript ‘t’)

(22) ḟ =
1

2
(x+ a)TS(x+ a) +

1

2
| ẋ |2 +(ẋ+ ḃ)TQ(x+ b) +

1

2
(x+ b)T Q̇(x+ b) + ψ̇,

which is minimised over choice of ẋ when

(23) ẋ = −Q(x+ b)

to the value

1

2
(x+ a)TS(x+ a)− 1

2
(x+ b)TQ2(x+ b) +

1

2
(x+ b)T Q̇(x+ b) + ψ̇ + ḃTQ(x+ b)

=
1

2
(x+ b)T (S −Q2 + Q̇)(x+ b) + (x+ b)T {S(a− b) +Qḃ}+ 1

2
(a− b)TS(a− b) + ψ̇.

Thus if (20.i)-(20.iii) hold, together with

(20.iv)
1

2
trQt + ρ̇t = 0, ρ1 = 0,

then we do indeed have that f is non-decreasing, and constant if (23) holds (thus (23) is

the differential equation for the least action path). It is clear that we need to investigate

existence and uniqueness of solutions to (20). Various questions of this nature are dealt

with in standard books on optimal control (see, for example, Kwakernaak & Sivan [7],

or Anderson & Moore [1]) but usually only for the case a ≡ 0, and with assumptions on

the positive-definiteness of various matrices which would not be satisfied by the rank-1

matrix S. So we here outline the proof of a result which covers what we need; the

heuristics are now over.

Theorem 1. (i) Let t 7−→ St be a bounded measurable map from R+ into the cone of

n× n non-negative-definite symmetric matrices. Then the equation

(20.i) Q2
t − Q̇t − St = 0, (t ≤ 1); Q1 = 0,

has a unique solution Q, which is symmetric and non-negative-definite. The solution

Q has the two interpretations

8



(24) E

[

exp

{

−1

2

∫ 1

t

XT
u SuXudu

}

| Xt = x

]

= exp{−1

2
xTQtx− ρt},

and

(25) min
yt=x

1

2

∫ 1

t

{

yTu Suyu+ | ẏu |2
}

du =
1

2
xTQtx,

where we have defined

(26) ρt ≡
∫ 1

t

1

2
tr Qudu.

(ii) If we have also that for every ǫ > 0,

(27)

∫ 1

1−ǫ

Sudu is of full rank ,

then Qt is positive-definite for all t < 1.

(iii) If we assume (27) and take bounded measurable a : [0, 1] 7−→ Rn, then there exists

b : [0, 1] 7−→ Rn and ψ : [0, 1] 7−→ R such that

E

[

exp

{

−1

2

∫ 1

t

(Xu + au)
TSu(Xu + au)du

}

| Xt = x

]

(28) = exp{−1

2
(x+ bt)

TQt(x+ bt)− ψt − ρt},

and

(29) min
yt=x

1

2

∫ 1

t

{

(yu + au)
TSu(yu + au)+ | ẏu |2

}

du =
1

2
(x+ bt)

TQt(x+ bt) + ψt.

The functions b, ψ solve

Qtḃt + St(at − bt) = 0, (t < 1);(20.ii)

ψ̇t + (bt − at)
TSt(bt − at) = 0.(20.iii)

The equation (20.ii) has at most one bounded solution.
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Proof. (i) To begin with, let us assume that S is continuous, St ≥ ǫI for all t (here,

ǫ > 0 is small but fixed). We seek to solve

(30) Qt =

∫ 1

t

(Su −Q2
u)du,

which we can always do for t in some neighbourhood of 1, by the classical method of

succesive approximations. The solution Q is clearly symmetric. It is a priori possible

that Q might be explode, but Q will be unique until explosion, as the coefficients of

the ODE are locally Lipschitz. We show that Qt > 0 for all t < 1 by taking

τ = sup{t < 1 : Qt is not positive-definite },

and taking x 6= 0 such that xTQτx = 0. We then see that

d

dt
xTQtx







t=τ
= −xTSτx < 0,

which contradicts the hypothesis that xTQtx > 0 for τ < t < 1.

Since Q is positive-definite, we see that

(31) xTQtx ≤
∫ 1

t

xTSuxdu ≤ c(1− t)‖x‖2,

for some constant c, and thus the solution Q does not explode, and uniqueness for all

time follows. The interpretations (24) and (25) are justified by the arguments (15)-(16)

and (21)-(23) respectively.

To extend now to bounded measurable S, we may, by Egorov’s theorem, approximate

such S by continuous uniformly elliptic S(n) for which (24), (25), (30) and (31) hold.

The bound (31) ensures that by passing to a subsequence we may assume the solutions

Q(n) converge, and the limiting forms of (24) and (25) are seen to hold.

(ii) To see that Qt must be positive-definite for t < 1, take the interpretation (24) and

consider what happens to either side as | x |→ ∞.

(iii) Again, we shall prove this assuming initially that S is continuous and uniformly

elliptic, and a is continuous. We can begin by assuming also that S and a are piecewise

constant functions, constant on each interval ((j − 1)2−n, j2−n]. Next, we take the

values X(j2−n), form the continuous piecewise-linear interpretation X(n) and consider

the quadratic functional

1

2

∫ 1

t

(X(n)
u + au)

TSu(X
(n)
u + au)du

10



and the analogous deterministic problem. These are now both discrete-time problems,

so we may directly apply (10), (11) and (12) to deduce the forms (28) and (29). These

expressions keep the same form in the limit. We may now approximate general con-

tinuous S and a by piecewise constant S, a and the form of the expressions (28), (29)

in the limit is unchanged. The differential equations (20.ii) and (20.iii) can now be de-

rived by considering a change from t to t+ h in the quadratic functional (28) or in the

minimisation problem (29); this analysis establishes that b and ψ are C1, which is not

immediately apparent from their derivation. We omit the routine but tedious details

of this analysis. Passing from continuous to bounded measurable S and a present no

further problems, (20.i)-(20.iii) must now be understood in integrated form.

The final assertion that (20.ii) has at most one bounded solution is clear when we

consider the martingale (16) - which is a martingale, because (20) is satisfied. This

shows that the equality (28) is valid, so b is uniquely determined (recall that Qt > 0).

Remarks. (i) Theorem 1 provides a powerful method for calculating the laws of

additive functionals. We show it at work on (1), the moment of inertia of a Brownian

polymer.

If we can compute

E exp

(

−1

2
θ2

∫ 1

0

(Bs + x)2ds

)

= E exp

(

−1

2
θ2

∫ 1

0

B2
sds− xθ2

∫ 1

0

Bsds−
1

2
θ2x2

)

,(32)

then if we multiply by exp(θ2x2/2) and mix over x with N(0, θ−2) distribution, we

obtain (1); this trick was used extensively in [3]. But it is simple to compute (32); just

take S ≡ θ2 in Theorem 1, solve (20.i) to obtain

Qt = θ tanh θ(1− t)

and then

ρt ≡
∫ 1

t

1

2
tr Qudu =

1

2
log cosh θ(1− t).

Thus

E exp

(

−1

2
θ2

∫ 1

0

(Bs + x)2ds

)

= (cosh θ)−1/2 exp

{

−1

2
x2θ tanh θ

}

.

Mixing over x with an N(0, θ−2) distribution yields the result

11



E exp

(

−1

2
θ2

∫ 1

0

(Bs −B)2ds

)

= (θ cosech θ)1/2.

See also Donati-Martin & Yor [4], Chan, Dean, Jansons & Rogers [3] for other proofs

of this remarkable fact. Notice that we have not needed the Ray-Knight theorem.

(ii) The situation for a 6= 0 is much more untidy than one would wish. One would

like to say that (20.ii) has a unique solution, but this is made difficult by the fact that

Qt → 0 as t ↑ 1. Indeed, in the one-dimensional example just considered, with a ≡ 0,

we find that

b(t) ≡ 0 and b(t) = cosech θ(1− t)

are both solutions to (20.ii). The final uniqueness assertion is some comfort, but it is

not clear that the b appearing in (28) and (29) necessarily should be bounded! Since

our application in §3 does not need these complications, we now lay them to one side.

3. The Colditz example

In view of Theorem 1, to compute (2) we have to solve the matrix Riccati equation

(33) Q2
t − Q̇t − θ2Kt = 0, Q1 = 0,

where K is given by (3). Before attacking this, we rework the problem into a more

manageable form. If we set

Rt ≡
(

cosωt − sinωt
sinωt cosωt

)

, Ut ≡ RT
t QtRt,

then the matrix Ricatti equation becomes

U̇t = U2
t + ωUtC − ωCUt − θ2

(

1 0
0 0

)

,

where

C ≡
(

0 −1
1 0

)

.

Now rephrasing this in time-to-go by setting Vt ≡ U1−t, and expressing

Vt ≡ ST
t ΛtSt, St ≡

(

cosφt − sinφt
sinφt cosφt

)

, Λt =

(

λ1(t) 0
0 λ2(t)

)

,

we obtain a differential equation for the eigenvalues λ1, λ2 of Q, and for the phase φ:

12



Λ̇ ≡ d

dt
(SV ST )

= −Λ2 + θ2
(

cosφ
sinφ

)

( cosφ sinφ ) + (φ̇C + ωSCST )Λ− Λ(φ̇C + ωSCST ),

which yields

λ̇1 = −λ21 + θ2 cos2 φ;(34.i)

λ̇2 = −λ22 + θ2 sin2 φ;(34.ii)

(λ1 − λ2)(φ̇+ ω) + θ2 sinφ cosφ = 0.(34.iii)

with boundary conditions λ1(0) = λ2(0) = 0. No boundary condition needs to be

imposed on φ, since λ1(0) = λ2(0) = 0 together with (34) implies that Q solves (33),

and we already know that there exists a unique solution.

For notational simplicity, we shall write throughout this section:

β =
√

ω2 + θ2;

σ =
√

(β − ω)(β + 3ω);

τ =
√

(β + ω)(β − 3ω);

r(t) = τ2(β + ω) coshσt+ σ2(β − ω) cosh τt− 8ω2β;

A =
√

ṙ2 + 2θ2r2 − 2rr̈

C = (β − 3ω) coshσt+ (β + 3ω) cosh τt− 2β.

Let us consider the following functions:

φ = −1

2
arcsin

2θ2ωC

A
;(35.i)

λ1 =
ṙ +A

2r
;(35.ii)

λ2 =
ṙ −A

2r
.(35.iii)

It is the purpose of this section to prove the following explicit form for the solution to

(34).

Theorem 2. The functions λ1, λ2 and φ defined in (35) solve (34).

By analytic continuation, we can suppose without loss of generality that β > 3ω

throughout this section. First of all, we have to justify our definitions of A and φ, for
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we always work on R in this section. We observe that ṙ2(0)+2θ2r2(0)−2r(0)r̈(0) = 0,

and that

d

dt
(ṙ2 + 2θ2r2 − 2rr̈) = 2r(2θ2ṙ − r(3))

= 2rθ4 [σ(β − 3ω) sinh(σt) + τ(β + 3ω) sinh(τt)]

≥ 0,

which implies that ṙ2 + 2θ2r2 − 2rr̈ is non-negative. Thus A is well-defined. Let us

write down

r = τ2(β + ω) coshσt+ σ2(β − ω) cosh τt− 8ω2β;

ṙ = στ2(β + ω) sinhσt+ σ2τ(β − ω) sinh τt;

r̈ = θ2τ2(β + 3ω) coshσt+ θ2σ2(β − 3ω) cosh τt;

r(3) = θ2στ2(β + 3ω) sinhσt+ θ2σ2τ(β − 3ω) sinh τt;

r(4) = θ4(β − 3ω)(β + 3ω)2 coshσt+ θ4(β − 3ω)2(β + 3ω) cosh τt.

We next prove the following lemma:

Lemma 2. We have,

(36) 4θ8ω2C2 = 2θ6r2 − 2θ4rr̈ − 3θ4ṙ2 − (r(3))2 + 4θ2ṙr(3).

Proof of Lemma 2. It follows that

2θ6r2 − 2θ4rr̈ = 2θ4r(θ2r − r̈)

= 2θ6r[τ2(β + ω) coshσt+ σ2(β − ω) cosh τt− 8ω2β

− τ2(β + 3ω) coshσt− σ2(β − 3ω) cosh τt]

= 2θ6r[−2ωτ2 cosh σt+ 2ωσ2 cosh τt− 8ω2β]

= 4θ6ω[τ2(β + ω) coshσt+ σ2(β − ω) cosh τt− 8ω2β]

× [−τ2 coshσt+ σ2 cosh τt− 4ωβ]

= 4θ6ω[−τ4(β + ω) cosh2 σt+ θ2τ2(β + 3ω) coshσt cosh τt

− 4ωβτ2(β + ω) coshσt− θ2σ2(β − 3ω) coshσt cosh τt

+ σ4(β − ω) cosh2 τt− 4ωβσ2(β − ω) cosh τt

+ 8ω2βτ2 coshσt− 8ω2βσ2 cosh τt+ 32ω3β2]

= 4θ6ω[−τ4(β + ω) cosh2 σt+ σ4(β − ω) cosh2 τt

+ 2θ2ω(β − 3ω)(β + 3ω) coshσt cosh τt

− 4θ2ωβ(β − 3ω) coshσt− 4θ2ωβ(β + 3ω) cosh τt+ 32ω3β2];
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3θ2ṙ − r(3) = θ2[στ2(3β + 3ω − β − 3ω) sinhσt+ σ2τ(3β − 3ω − β + 3ω) sinh τt]

= 2θ2β[στ2 sinhσt+ σ2τ sinh τt];

θ2ṙ − r(3) = θ2[στ2(β + ω − β − 3ω) sinhσt+ σ2τ(β − ω − β + 3ω) sinh τt]

= 2θ2ω[−στ2 sinhσt+ σ2τ sinh τt].

So

−3θ4ṙ2 − (r(3))2 + 4θ2ṙr(3) = −(3θ2ṙ − r(3))(θ2ṙ − r(3))

= 4θ4ωβ[σ2τ4 sinh2 σt− σ4τ2 sinh2 τt]

= 4θ6ω[βτ2(β − 3ω)(β + 3ω) sinh2 σt− βσ2(β − 3ω)(β + 3ω) sinh2 τt]

= 4θ6ω[βτ2(β − 3ω)(β + 3ω) cosh2 σt

− βσ2(β − 3ω)(β + 3ω) cosh2 τt+ 4ωβ2(β − 3ω)(β + 3ω)].

Therefore

2θ6r2 − 2θ4rr̈ − 3θ4ṙ2 − (r(3))2 + 4θ2ṙr(3)

= 4θ6ω[τ2(β − 3ω)(β(β + 3ω)− (β + ω)2) cosh2 σt

+ σ2(β + 3ω)((β − ω)2 − β(β − 3ω)) cosh2 τt

+ 2θ2ω(β − 3ω)(β + 3ω) coshσt cosh τt− 4θ2ωβ(β − 3ω) coshσt

− 4θ2ωβ(β + 3ω) cosh τt+ 4ωβ2(8ω2 + (β − 3ω)(β + 3ω))]

= 4θ6ω[θ2ω(β − 3ω)2 cosh2 σt+ θ2ω(β + 3ω)2 cosh2 τt

+ 2θ2ω(β − 3ω)(β + 3ω) coshσt cosh τt

− 4θ2ωβ(β − 3ω) coshσt− 4θ2ωβ(β + 3ω) cosh τt+ 4θ2ωβ2]

= 4θ8ω2[(β − 3ω)2 cosh2 σt+ (β + 3ω)2 cosh2 τt

+ 2(β − 3ω)(β + 3ω) coshσt cosh τt

− 4β(β − 3ω) coshσt− 4β(β + 3ω) cosh τt+ 4β2]

= 4θ8ω2C2,

completing the proof of Lemma 2.

Proof of Theorem 2. It follows from (36) that
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(

2θ2ωC

A

)2

=
4θ8ω2C2

A2θ4

=
2θ6r2 − 2θ4rr̈ − 3θ4ṙ2 − (r(3))2 + 4θ2ṙr(3)

A2θ4

= 1− 4θ4ṙ2 − 4θ2ṙr(3) + (r(3))2

A2θ4

= 1−
(

2θ2ṙ − r(3)

Aθ2

)2

,

which is strictly smaller than 1 for every t > 0. Thus our definition of φ is also justified.

When t is positive, φ is strictly between −π/4 and 0. We also observe from the previous

calculation that

(37) cos(2φ) =
2θ2ṙ − r(3)

Aθ2
.

Let us now prove (34). By definition of λ1, we have

λ̇1 + λ21 =
(r̈ + Ȧ)r − (ṙ + A)ṙ

2r2
+
ṙ2 + A2 + 2ṙA

4r2

=
rr̈ + A−1r2(2θ2ṙ − r(3))− ṙ2 − ṙA+ ṙ2 + θ2r2 − rr̈ + ṙA

2r2

=
2θ2ṙ − r(3)

2A
+
θ2

2
,

which, according to (37), is equal to θ2(cos(2φ) + 1)/2 = θ2 cos2 φ. Thus (34.i) is

satisfied by our λ1 and φ. A similar argument can be used to verify (34.ii). Now we

turn to (34.iii). It follows from the definition of r and θ that

θ4r − 2θ2r̈ + r(4)

= θ4[τ2(β + ω) coshσt+ σ2(β − ω) cosh τt− 8ω2β

− 2τ2(β + 3ω) coshσt− 2σ2(β − 3ω) cosh τt

+ (β − 3ω)(β + 3ω)2 coshσt+ (β − 3ω)2(β + 3ω) cosh τt]

= θ4[4ω2(β − 3ω) coshσt+ 4ω2(β + 3ω) cosh τt− 8ω2β]

= 4θ4ω2C.(38)

On the other hand, we have
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φ̇ = − 1

2 sin 2φ

d

dt

(

2θ2ṙ − r(3)

Aθ2

)

=
A

4θ2ωC

(2θ2r̈ − r(4))A− (2θ2ṙ − r(3))Ȧ

A2θ2

=
(2θ2r̈ − r(4))A2 − r(2θ2ṙ − r(3))2

4θ4ωCA2
.

Therefore we get that

(λ1 − λ2)(φ̇+ ω) + θ2 sinφ cosφ

=
A

r

(

(2θ2r̈ − r(4))A2 − r(2θ2ṙ − r(3))2

4θ4ωCA2
+ ω

)

− θ4ωC

A

=
(2θ2r̈ − r(4))A2 − r(2θ2ṙ − r(3))2 + 4θ4ω2CA2 − 4rθ8ω2C2

4rθ4ωCA

=
(2θ2r̈ − r(4))A2 − r(2θ6r2 − 2θ4rr̈ + θ4ṙ2) + 4θ4ω2CA2

4rθ4ωCA2
( by (36))

=
(2θ2r̈ − r(4) − θ4r + 4θ4ω2C)A2

4rθ4ωCA2

= 0;

here, the last equality is due to (38). Theorem 2 is thus proved .

We observe that

trQt = λ1(1− t) + λ2(1− t) =
ṙ(1− t)

r(1− t)
.

If we follow the notation of (7), we get:

γ(t) =
1

2
log

r(1− t)

r(0)
.

Therefore by (4) we obtain the following

Theorem 3. We have,

E exp

(

−θ
2

2

∫ 1

0

XT
uKuXudu

)

=

(

r(1)

2β(β − 3ω)(β + 3ω)

)−1/2

;

with

r(1) = τ2(β + ω) coshσ + σ2(β − ω) cosh τ − 8ω2β.

Remark. Taking ω = 0 and ω = +∞, we get (8) and (9) respectively.
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