
To appear in Stochastics and Stochastics Reports, 1994
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Abstract. We give here an elementary proof of the fundamental theorem of discrete-time

asset pricing, due originally to Dalang, Morton and Willinger. The essence is a simple

utility-maximisation argument, and no deep results from functional analysis are required.
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1. Introduction. Let (St)
N
t=0 be an R

d-valued discrete-time stochastic process, which

we think of as modelling the evolution of the (discounted) price of d assets. There is a

zeroth asset, cash, whose price at time t is always 1, and we include this in the notation

by defining S̄T
t ≡ (1, ST

t ). The process S is adapted to a filtration (Ft)
N
t=0 defined on some

probability space (Ω,F , P ). During day n, the investor holds a portfolio θn ≡ (θ1n, . . . , θ
d
n)

T

of the assets, θ̄n ≡ (θ0n, . . . , θ
d
n)

T , and at the end of the day the prices Sn for that day are

revealed, yielding the investor a gain of θn · (Sn − Sn−1) = θ̄n · (S̄n − S̄n−1) for the day.

In the light of what was known at the end of day n, the investor chooses the next day’s

portfolio θ̄n+1 subject to the budget constraint

(1.1). (θ̄n+1 − θ̄n) · S̄n = 0

Since there are no short-selling restrictions, what this means in effect is that the investor

chooses θn+1, and then θ0n is altered to pay for the new portfolio. Thus the gain over the

whole time period up to N is simply

(1.2)

N∑
n=1

θn · (Sn − Sn−1) ≡ (θ̄ · S̄)N − (θ̄ · S̄)0.

It is clear from the interpretation of the portfolio process that θ̄n must be Fn−1−meas-

urable for each n. When we speak of a portfolio process θ̄, we shall always assume that
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θ̄n is Fn−1−measurable for all n, and that θ̄ satisfies the self-financing budget constraint

(1.1).

We call the portfolio process (θ̄n)
N
n=1 an arbitrage opportunity if

(1.3) (θ̄ · S̄)N − (θ̄ · S̄)0 ≥ 0 a.s., and P [(θ̄ · S̄)N − (θ̄ · S̄)0 > 0] > 0.

The result of Dalang, Morton & Willinger [2] is the following.

THEOREM 1 (Dalang, Morton & Willinger). The following are equivalent:

(i) There exists a probability P̃ equivalent to P such that under P̃ , (Sn,Fn)
N
n=0 is a mar-

tingale;

(ii) There does not exist any arbitrage opportunity.

Moreover, if either of these equivalent conditions holds, then it is possible to choose P̃ in

such a way that (dP̃/dP ) is bounded.

The purpose of this paper is to give a simple proof of this result. The method used is

essentially to maximise the expected utility of gains from trade over all possible trading

strategies.

This problem in various forms has been considered by a number of authors over the

years: Harrison & Kreps [6], Harrison & Pliska [7], Kreps [9], Duffie & Huang [4], Stricker

[12], Back & Pliska [1], Föllmer & Schweizer [5], Delbaen [3], Schachermayer [10], Kabanov

& Kramkov [8].

The basic idea of the present approach is easily sketched in the case of one time

period. Take U : R → (−∞, 0) to be a strictly concave, strictly increasing function with

continuous derivative, and take X to be an R
d-valued random variable (whose support is

not contained in any proper subspace, for simplicity.) We define Ũ : Rd → (−∞, 0) by

Ũ(a) ≡ EU(a ·X).

If Ũ is maximised at the point a∗ ∈ R
d, then the first-order condition implies that

0 = EXU ′(a∗ ·X),

and so (an appropriate multiple of) U ′(a∗·X) will serve as a change of measure which makes

X into a zero-mean random variable. On the other hand, if supa Ũ(a) is not attained, then
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it can be shown that there exists some θ ∈ R
d\{0}such that Ũ(tθ) remains bounded as

t → ∞, and this implies that P [θ · X < 0] = 0. Since the support of X is assumed not

to be contained in a proper subspace, we have P [θ ·X > 0] > 0, and so θ is an arbitrage

opportunity.

Making this precise, and extending to the multi-period case, requires some care, but

the essential idea is that just given. It may be possible to extend the method to continuous

time.

In Section 2, we give the structure of the proof, using a number of technical propo-

sitions on the way. The proof of these is deferred until Section 3.

Acknowledgement. It is a pleasure to thank two referees, whose careful reading of this

paper has greatly improved the presentation.

2. Proof of the result of Dalang, Morton & Willinger. The proof of the result is

built on several simple propositions. The first says that there is an arbitrage opportunity

during the time period up to N if and only if there is an arbitrage opportunity on one of

those days.

PROPOSITION 2.1 The following are equivalent.

(2.1i) There exists an arbitrage opportunity;

(2.1ii) For some n = 1, . . . , N , there exists an Fn−1−measurable Rd-valued random variable

θn such that

θn · (Sn − Sn−1) ≥ 0 a.s, and P [θn · (Sn − Sn−1) > 0] > 0;

(2.1iii) For some n = 1, . . . , N , there exists an Fn−1−measurable R
d+1-valued random

variable θ̄n such that

θ̄n · (S̄n − S̄n−1) ≥ 0 a.s, and P [θ̄n · (S̄n − S̄n−1) > 0] > 0.

It is not too hard to show (and it is a special case of Proposition 2.2) that if ϕ : Rd → R
+

is strictly convex, then either there exists a unique a∗ minimising ϕ, or it is possible to

find some a ∈ R
d\{0} such that

lim sup
t→∞

ϕ(ta) <∞.
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The purpose of the next proposition is to show that if we deal with a random strictly

convex function, these choices can be made measurably.

PROPOSITION 2.2. Suppose that ϕ : Ω× R
d → R

+ has the properties that

(i) ϕ(ω, ·) is strictly convex for each ω;

(ii) ϕ(·, a) is G-measurable for each a, where G is a sub-σ-field of F . Then the events

A0 ≡ {ω : there exists a∗ such that ϕ(ω, a∗) ≤ ϕ(ω, a) for all a}

A1 ≡ {ω : for each a ∈ R
d\{0}, limt→∞ ϕ(ω, ta) = +∞}

are the same, and are G-measurable. Moreover, a∗ ≡ a∗(ω) is G-measurable.

If we further assume that

(2.2) F (ω) ≡ {a ∈ Sd−1 : limϕ(ω, ta) <∞}

is closed for all ω, then it is possible to make a G-measurable choice α(ω) ∈ F (ω) whenever

F (ω) 6= ∅.

Proof of Theorem 1. (i) ⇒ (ii). If there existed an equivalent martingale measure P̃ and

an arbitrage opportunity, then by (2.1ii) there is some Fn−1-measurable θn such that

(2.3) θn · (Sn − Sn−1) ≥ 0 a.s., P̃ [θn · (Sn − Sn−1) > 0] > 0.

Replacing θn by θn|θn|
−1I{|θn|>0}, we may assume that θn is bounded, and then θn · (Sn−

Sn−1) ∈ L1(P̃ ), and has P̃ -mean 0, since S is a P̃ -martingale. This contradicts (2.3).

(ii) ⇒ (i). We now suppose that there is no arbitrage, so, specifically, that (2.1ii) does not

hold; we must construct an equivalent martingale measure.

Let us now fix our strictly concave, strictly increasing function U : R → (−∞, 0).

We shall insist also that U satisfies the condition that for some γ > 0, for all x ∈ R

(2.4) U ′(x) ≤ γ(1 + |U(x)|).

We aim to maximise the expected utility EΠN
j=1U(θj ·∆Sj), where ∆Sj ≡ Sj − Sj−1, but

the first problem is that such an expectation may not be finite. This is easily overcome,

however.

PROPOSITION 2.3. There exists a bounded decreasing strictly positive function g : R+ →

(0,∞) such that for each a ∈ R
d

sup
x∈Rd

|U(a · x)|g(|x|) <∞.
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So if we immediately replace P by P ′, where dP ′ ∝ ΠN
j=1g(|∆Sj|)dP , then the integrability

of ΠN
j=1U(θj ·∆Sj) is assured for all θj ∈ R

d.

We shall construct inductively measures PN = P ′, PN−1, . . . , P0 ≡ P̃ equivalent to

P of the form

(2.6) dPn = cnΠ
N
k=n+1U

′(ξk ·∆Sk)dP
′,

where the ξk will be Fk−1-measurable, and the cn will be appropriate normalising con-

stants. The measures Pn will satisfy the inductive hypothesis

(2.7i) for all k ≤ n, for all a ∈ R
d, U(a ·∆Sk) ∈ L1(Pn);

(2.7ii) (Sk)
N
k=n is a ((Fk)

N
k=n, Pn)-martingale.

Clearly, therefore, once the inductive procedure is complete, the measure P0 is our

equivalent martingale measure, and the density will be bounded if the U we chose has

bounded derivative.

Verification of the inductive hypothesis for n = N is immediate; (2.7i) is assured

by the construction of P ′, and (2.7ii) is vacuous. Suppose therefore that we have built

PN , . . . Pn, and we now wish to construct Pn−1. Abbreviate Sn−Sn−1 to X , and let κ(·, ·)

be a regular conditional Pn-distribution for X given Fn−1.

PROPOSITION 2.4. Let Π denote the compact metric space of all d × d orthogonal pro-

jection matrices. Then there exists an Fn−1-measurable mapping R : Ω → Π such that for

almost all ω

kerR(ω) = lin(supp(κ(ω, ·))).

We now apply Proposition 2.2 to the Fn−1-measurable random convex function

ϕ(ω, a) ≡

∫
−U(a · x)κ(ω, dx) + |R(ω)a|2

= −En[U(a ·∆Sn)|Fn−1] + |R(ω)a|2,

which it is easy to check satisfies the hypotheses of Proposition 2.2. For each rational

a, ϕ(ω, a) < ∞ almost surely, since by the inductive hypothesis (2.7i), U(a · ∆Sn) is in

L1(Pn). Hence, except on a null set of ω, ϕ is finite-valued at every rational, and so is

finite-valued everywhere.

Consider now what happens for a ∈ F (ω) (defined at (2.2)); we have

limϕ(ω, ta) <∞.
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Thus we conclude that R(ω)a = 0, so a ∈ lin ( supp (κ(ω, ·))), and we must have

(2.8) κ(ω, {x : a · x < 0}) = 0,

otherwise the term
∫
−U(ta · x)κ(ω, dx) would explode as t tends to infinity. For fixed ω,

the set of a ∈ Sd−1 for which (2.8) holds is clearly closed, so we may use Proposition 2.2

to give an Fn−1-measurable choice α(ω) whenever F (ω) 6= ∅. But then we must have

(2.9) κ(ω, {x : α(ω) · x > 0}) > 0,

for otherwise κ(ω, {x : α(ω) · x = 0}) = 1, contradicting the definition of R. This Fn−1-

measurable choice of α(ω) would therefore be an arbitrage opportunity; the only conclusion

is that F (ω) must be empty almost surely, and there exists an Fn−1-measurable a∗(ω) which

minimises ϕ(ω, ·). Evidently, R(ω)a∗(ω) = 0 for this minimising choice.

All that remains is to carry out the first-order analysis. We have for any v ∈ R
d

and h > 0

(2.10)

0 ≤
1

h

∫
[U(a∗(ω) · x)− U(a∗(ω) · x+ hv · x)]κ(ω, dx)

=
1

h

∫
{v·x<0}

[U(a∗(ω) · x)− U(a∗(ω) · x+ hv · x)]κ(ω, dx)

+
1

h

∫
{v·x>0}

[U(a∗(ω) · x)− U(a∗(ω) · x+ hv · x)]κ(ω, dx)

and letting h ↓ 0, we use monotone convergence in each integral, the finiteness of the first

being assured by hypothesis (2.7i). The conclusion is that

0 ≤

∫
v · x U ′(a∗(ω) · x) κ(ω, dx)

and since v is arbitrary, we have

(2.11) 0 =

∫
xU ′(a∗(ω) · x) κ(ω, dx),

and indeed xU ′(a∗(ω) · x) ∈ L1(κ(ω, ·)) by modifying slightly the argument at (2.10).

Before we allow ourselves to define Pn−1 by the recipe (2.6), we must check that (writing

now ξn for a∗, ∆Sn for X) U ′(ξn ·∆Sn) ∈ L1(Pn). However, by the condition (2.4)
∫
U ′(ξn ·∆Sn)dPn ≤ γ + γ

∫
−U(ξn ·∆Sn)dPn

= γ + γ

∫
En[−U(ξn ·∆Sn)|Fn−1]dPn

≤ γ − γU(0),
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since ξn(ω) is the choice of portfolio which maximises En(U(ξ ·∆Sn)|Fn−1), so this must

be at least as good as using 0!

Thus we can indeed define Pn−1 using (2.6) and we have only to check that Pn−1

satisfies the inductive hypothesis (2.7). But we have for k ≤ n− 1, a ∈ R
d

∫
|U(a ·∆Sk)| dPn−1 ∝

∫
|U(a ·∆Sk)| U

′(ξn ·∆Sn) dPn

≤ γ

∫
|U(a ·∆Sk)| {1− U(ξn ·∆Sn)} dPn

≤ γ(1− U(0))

∫
|U(a ·∆Sk)| dPn

by firstly conditioning on Fn−1 and using the above argument again. Thus (2.7i) holds,

and for (2.7ii) it is clear that changing from Pn to Pn−1 will not affect the martingale

property of (Sk)
N
k=n, and the martingale property for ∆Sn is exactly what we worked so

hard to establish at (2.11)! The proof is complete.

3. Proof of auxiliary propositions.

Proof of Proposition 2.1. Equivalence of (2.1ii) and (2.1iii) is trivial. The implication

(2.1iii) ⇒ (2.1i) is immediate, so let us now suppose conversely that (2.1i) holds, and

that the portfolio process (θ̄n)
N
n=1 is an arbitrage opportunity. Assume without loss of

generality that (θ̄ · S̄)0 = 0. We define

m ≡ inf{n : (θ̄ · S̄)n ≥ 0 a.s., and P [(θ̄ · S̄)n > 0] > 0},

so that m ≥ 1. Now either (a) (θ̄ · S̄)m−1 = 0 a.s., or (b) the probability of A ≡

{(θ̄ · S̄)m−1 < 0} is positive. If (a) happens, then, using (1.1),

(θ̄ · S̄)m = (θ̄ · S̄)m − (θ̄ · S̄)m−1

= θ̄m · (S̄m − S̄m−1)

≥ 0 a.s.

and P [θ̄m · (S̄m − S̄m−1) > 0] = P [(θ̄ · S̄)m > 0] > 0, so (2.1iii) holds.

If (b) happens, then on the event A

θ̄m · (S̄m − S̄m−1) = (θ̄ · S̄)m − (θ̄ · S̄)m−1 ≥ −(θ̄ · S̄)m−1 > 0.

Thus if θ̃m ≡ IAθ̄m, we have

θ̃m · (S̄m − S̄m−1) ≥ 0, P [θ̃m · (S̄m − S̄m−1) > 0] = P (A) > 0.
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So once again, (2.1iii) holds.

Proof of Proposition 2.2. Suppose that there exists a∗ such that ϕ(a∗) ≤ ϕ(a) for all a ∈ R
d,

and that there exists b 6= 0 such that lim inft→∞ ϕ(tb) < ∞. Thus there exist tj → ∞

such that ϕ(tjb) ≤ c <∞. Now consider the convex combinations aj ≡ θja
∗ + (1− θj)tjb,

where θj is so chosen that aj lies on the unit sphere centred at a∗. Convexity implies that

ϕ(aj) ≤ θjϕ(a
∗) + (1− θj)ϕ(tjb) ≤ θjϕ(a

∗) + (1− θj)c,

and θj → 1 as j → ∞. Thus ϕ(a∞) ≤ ϕ(a∗), where a∞ is the limit of the aj. But also

ϕ(a∞) ≥ ϕ(a∗), and strict convexity of ϕ yields a contradiction. Thus A0 ⊆ A1.

Conversely, suppose that for each b ∈ R
d\{0}, limt→∞ ϕ(tb) = +∞. Now consider

the closed subsets

Fn = {x ∈ Sd−1 : ϕ(nx) ≤ ϕ(0) + 1}

of the compact set Sd−1. Convexity of ϕ implies that the Fn decrease. Since ∩nFn = ∅

by hypothesis, it follows from the finite intersection property that for some N , FN = ∅.

This implies that ϕ(λx) ≥ ϕ(0) + 1 for all x ∈ Sd−1, for all λ ≥ N , and hence that

{x ∈ R
d : ϕ ≤ ϕ(0)+1/2} is compact. Thus the infimum of ϕ is attained, and we conclude

that A1 ⊆ A0.

Next,

A1 =
⋂
n

⋃
m

⋂
q∈Qd,|q|≥m

{ϕ(q) > n}

is G-measurable, and for any open ball B ⊆ R
d, in view of the strict convexity of ϕ,

{a∗ ∈ B} =
⋃

q∈Qd∩B

⋂
q′∈Qd\B

{ϕ(q) < ϕ(q′)}

is again G-measurable.

We turn now to the final assertion of Proposition 2.2. Fix some dense sequence D

in Sd−1, and observe that if K is a closed ball of positive radius, then

F ∩K 6= ∅ ⇔ ∃M such that ∀k ∈ N, ∃x ∈ D ∩K such that ϕ(kx) ≤M.

Only the implication from right to left is not obvious. But if there exist xk ∈ D ∩ K

such that ϕ(kxk) ≤ M , then by passing to a subsequence if necesary we can assume that

xk → x∗, and that x∗ ∈ F . Indeed, if for some m we have ϕ(mx∗) > ϕ(0) ∨M , we see

that for k > m we shall have

ϕ(mxk) ≤
m

k
ϕ(kxk) +

k −m

k
ϕ(0) ≤ ϕ(0) ∨M

8



and ϕ(mxk) → ϕ(mx∗) as k → ∞, a contradiction.

Thus

{F ∩K 6= ∅} =
⋃
M

⋂
k≥1

⋃
x∈D∩K

{ϕ(ω, kx) ≤M}

is a G-measurable event, and hence for any open V , {F ∩ V 6= ∅} is also G-measurable.

Fix now some orthonormal basis e1, . . . , ed of Rd. The events

Bj± = {ω : ±ej · x > 0 for some x ∈ F (ω)}

are all in G, and
⋃d

j=1
(Bj+ ∪Bj−) = {ω : F (ω) 6= ∅}. On the event B1+, there is an α in

F (ω) maximising e1 ·a, and this α is unique, since C = {a ∈ R
d : lim supt→∞ ϕ(ω, ta) <∞}

is a convex cone. Now for any compact ball K,

{α /∈ K} = {sup
x∈F

e1 · x > sup
x∈F∩K

e1 · x}

=
⋃
q∈Q

{q ≤ sup
x∈F

e1 · x} ∩ { sup
x∈F∩K

e1 · x < q}

∈ G.

Thus on B1+ we can make a measurable choice of α; and then on B1−\B1+; and then on

B2+\(B1+ ∪B1−), and so on.

Proof of Proposition 2.3. Define for t ≥ 0

ψ(t) = 1 ∨ |U(−t)|

so that |U(a · x)| ≤ ψ(|a|.|x|). Now we simply take g(t) ≡ ψ(t2)−1, the inequality for

a, b ≥ 0

ψ(ab) ≤ ψ(a2)ψ(b2)

being trivial.

Proof of Proposition 2.4. If Π is the collection of all d× d orthogonal projection matrices,

then Π is a compact metric space, Π = ∪d
r=0Πr, where Πr is the subset of all rank-r

projections, a closed subset of Π. Then Πr contains a dense sequence, therefore

γr ≡ inf{E[|R∆Sn|
2|Fn−1] : R ∈ Πr}

is Fn−1-measurable, as is

ν ≡ sup{r ≥ 0 : γr = 0}.
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The support of P (·|Fn−1) is (d − ν)-dimensional and γν = 0 is attained at a unique R∗,

which is Fn−1-measurable.

Remark. An example of Schachermayer [11], Section 2.8, shows that if one allows an infinite

sequence of price processes, instead of the finite sequence we took here, then Theorem 1 is

no longer true.
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[5] FÖLLMER, H. & SCHWEIZER, M.: Hedging of contingent claims under incomplete

information. Preprint, 1991.

[6] HARRISON, J. M. & KREPS, D.: Martingales and arbitrage in multiperiod securities

markets. J. Econ. Theory 20, 381–408, 1979.

[7] HARRISON, J. M. & PLISKA, S. R.: Martingales and stochastic integrals in the theory

of continuous trading. Stoch. Proc. Appl. 11. 215–260, 1981.

[8] KABANOV, Y. M. & KRAMKOV, D. O.: No-arbitrage and equivalent martingale

measures: an elementary proof of the Harrison-Pliska theorem. Preprint, 1992.

[9] KREPS, D.: Arbitrage and equilibrium in economics with infinitely many commodities.

J. Math. Econ. 8, 15–35, 1981.

[10] SCHACHERMAYER, W.: Martingale measures for discrete time processes with infi-

nite horizon. Preprint, 1992.

[11] SCHACHERMAYER, W.: A Hilbert space proof of the fundamental theorem of asset

pricing in finite discrete time. Preprint, 1992.

[12] STRICKER, C. Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré 26,
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