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Abstract

Portfolio selection is one of the most important areas of modern
finance, both theoretically and practically. Reliance on a single model
is fraught with difficulties, so attempting to combine the strengths
of different models is attractive; see, for example, [5] and the many
references therein. This paper contributes to the model combination
literature, but with a difference: the models we consider here are mak-
ing statements about different sets of assets. There appear to be no
studies making this structural assumption, which completely changes
the nature of the problem. This paper offers suggestions for principles
of model combination in this situation, characterizes the solution in
the case of multivariate Gaussian distributions, and provides a small
illustrative example.

1 Introduction

Suppose that you are faced with the problem of choosing a portfolio position
in a universe of N assets, where N may be many hundreds. It is generally
understood that a simple-minded direct attempt to build a portfolio involv-
ing all N of the assets will be a dismal failure, for various reasons, chief
among them being the difficulty in forming accurate estimates of the covari-
ance matrix of returns; see, for example, the book by Fan et al. [4]. The
dimensionality of the problem requires innovation, and there are many differ-
ent directions we may look to get traction. For example, we might propose a
low-dimensional factor model, where all the returns processes are driven by a
handful of factors which should be easier to deal with. The factors could be
series which are economically significant, such as the returns on a major stock
index, the prices of important commodities, key interest rates or exchange
rates; or the factors could be derived from a principal components analysis of
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an estimated covariance matrix. Or again, we might constrain the portfolio
positions to be long-only to try to deal with the extreme long-short positions
that generally arise in a simple-minded approach. We might increment the
covariance with a multiple of the identity, for the same reason. We might
take different models and combine their forecasts in some way, as in Bates &
Granger [1], Elliott & Timmermann [3], Geweke & Amisano [5], Pettenuzzo
& Ravazzolo [6], and many other papers referred to therein.

A different approach to the high-dimensionality would be to split the
universe of assets into smaller sets of assets, and try to do something sensible
with those smaller sets. If we believe we can make a reasonable combination
of up to ten assets (say) then we could in principle use such a ‘divide and
conquer’ approach, but it would not allow us to exploit the correlations
between sets of assets, and the problem still remains of how to weight the
different portfolios formed from the subsets.

The approach taken here has this flavour, in that we suppose the universe
of N assets is broken down into subsets of assets, but we do not suppose that
those subsets are disjoint.1 It might be for example that we want to build one
model for G10 currencies, and another one for European government bonds,
stock indices and currencies; we may have insights into the way currencies
move together, and we may have separate insights into how a nation’s cur-
rency, stock index and bonds move together. Now we would like to combine
these (hopefully reasonably good) models. So the European G10 currencies
are common to both, but each model speaks of variables that are outside the
other. How should this be done?

This paper offers some possible answers. In Section 2, we introduce nota-
tion and formulate the problem. Models speak of different sets of assets, and
this introduces an equivalence relation on the assets, two assets being con-
sidered equivalent if there is no model which speaks about one of the assets
but not the other. The equivalence classes (which for brevity we refer to as
tiles) are sets of assets that can be considered together for the purposes of in-
ference. We then propose that all those models which speak about the assets
in a given tile are combined by Bayesian model averaging2. This tells us how

1Quite how this decomposition is to be done is not the subject of this paper; different
finance industry professionals will have different views on what makes sense, and if I had
my own unique insights into good ways of doing this decomposition, you may be sure that
I would not be revealing them here. Suffice it to say that this study came from an industry
context where exactly this question arose.

2This part of the story is hardly new; Geweke & Amisano [5] for example follow this
route. We do propose a little variant (3) of the standard Bayesian approach which avoids
the known issue that over time the posterior distribution converges to a point mass on
just one model.
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to combine the statements of all our models for any individual tile, but how
we combine across different tiles still needs to be specified. We address this
in Section 3, where we propose to construct a measure with the required tile
marginals which solves a relative entropy minimization problem. It turns out
that this problem has a unique solution, which can be characterized quite
cleanly, albeit implicitly.

This approach operates at an abstract level, so we do not need to make
any structural assumptions about any of the variables; we do not even need
to assume that they take values in a vector space. However, to be able to ap-
ply the results, we develop the form of the solution under the hypothesis that
all the predictive distributions are multivariate Gaussians. The hypothesis
is unlikely to hold in practical situations, but it is a plausible approxima-
tion, and we are able to make the combined distribution reasonably explicit.
Identifying the distribution in general requires numerical solution. We briefly
discuss a numerical example before concluding.

2 Problem formulation.

We work in discrete time with a universe of N assets. The returns on day t
will be denoted by the N -vector

Xt = (X1
t , . . . , X

N
t ),

and we take the probability space to be the canonical path space Ω ≡ (RN)Z
+

.
Information available by time t will be denoted by Ft. Let the set S =
{1, . . . , N} index the assets. Suppose that we have models M1, . . . ,MK ,
where model Mα makes predictions only about assets with labels in Sα ⊆ S.
To avoid triviality, we assume that ∪αSα = S. It is also worth noticing that
if there is some set I ⊂ {1, . . . , K} of models such that SI ≡ ∪α∈ISα is
disjoint from S∼I ≡ ∪α 6∈ISα, then there is no connection between the models
{Mα, α ∈ I} and {Mα, α 6∈ I}. We could therefore analyse the two sets
of models completely separately, and in practice it will probably be worth
making such decompositions before we start, though in the account which
follows this will not be assumed.

Formally, model Mα is a sequence (mα
t )t=1,2,... where3 for each t ≥ 1

mα
t : Ω→ P(RSα) is Ft−1-measurable.

We refer to the mα
t as the predictive distributions of the individual models;

these are the central objects of study.

3P(Y ) denotes the (Polish) space of all probability measures on (Polish) space Y .
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Notice that a model Mα is not a probability on (Ω,F), because it makes
no statements about the distributions of returns X i for i 6∈ Sα. Nor is Mα a
probability defined on the sub-sample space Ωα ≡ (RSα)Z

+
, because it may

be informed by the behaviour of assets other than those in Sα. The number
N of assets may be very large, and each set Sα may be quite small, perhaps
just a single asset. Sets Sα and Sα′ may be disjoint, they may have non-empty
intersection, one may be contained in the other; anything is possible.

On day t− 1, each model Mα makes a prediction mα
t of the distribution

of the day-t returns of the assets in Sα; the goal is to find some algorithm to
combine the mα

t into a single predictive distribution for all the assets in S in
a reasonable way. We shall require that the combination algorithm should
not depend on specific distributional assumptions, and should be compatible
with Bayesian principles. The set S is partitioned by the equivalence relation

i ∼ j ⇔ ∀α : either both i, j are in Sα or neither is in Sα. (1)

into equivalence classes Ck, k = 1, . . . , J , which we will refer to as tiles.
These are sets of variables which are not split by any model. This simple
Venn diagram illustrates the situation; the region coloured red is a tile, Cr ≡
(S1 ∩ S2)\S3, as is the region coloured green, Cg ≡ S1 ∩ S2 ∩ S3.

S1

S2

S3

S4

Thus on day t − 1 each of the models M1, M2, M3 makes a prediction for
day t about the variables in the green tile: how should we combine these?
Bearing in mind that we can only compare predictions which speak about
the same variables, we propose the following principle for combining the
predictive distributions:

(P0) Predictions for a tile are done by Bayesian model averaging over the
maximal set of common variables.

So if we consider the green tile, models M1, M2, M3 predict for those
variables (and others besides), and what we do is take the marginals of the
predictive distributions mα

t (α = 1, 2, 3) on the green tile Cg, and then do a
Bayesian model averaging of these marginal distributions.

To explain this in a little more detail, if on day t− 1 model j states that
the law of observation Yt to be observed on day t will have density f jt (·),
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then the posterior probabilities πjt of the different models update according
to Bayes’ rule:

πjt ∝ πjt−1 f
j
t (Yt), (2)

where the constant of proportionality is determined by the requirement that
the πjt sum to 1. Thus on day t− 1, each of the models M1, M2, M3 states
a (marginal) density for the variables Yt[Sα], and the predicted law of these
variables will be the average of those predicted densities, weighted according
to the day-(t−1) posterior. In practice, the updating relation (2) is modified
to

πjt ∝
∑
k

πkt−1 pkj f
j
t (Yt), (3)

where P = (pjk) is a fixed transition matrix4. The interpretation is that the
data-generating process may change state like a Markov chain with transition
matrix P . The reason for introducing this possibility is because of the ten-
dency of the updating recursion (2) to get stuck at historical average values,
which in the context of asset returns is undesirable - we do not believe that
asset returns from the distant past should have the same influence on our
actions as more recent data, and using (3) instead of (2) reflects that. To
expand a little on this, the numerical example studied later compares mod-
els where the predicted mean return is an geometrically-weighted moving
average of recent returns, with different weighting parameters for different
models, perhaps with mean lookbacks of 10, 20 and 40 days. So each of these
models pays more attention to recent returns than to older data, but what
we want to avoid is the situation where after a lot of data has been processed
we put almost all the weight on the model with a 20-day lookback, and are
unable to change that posterior very much during the next few months. Ex-
perience shows that market dynamics can change quite quickly, and a model
that does not admit that will go on losing money for too long when such a
change happens.

This explains how we use the data gathered by day t − 1 to state what
we think the distribution of the Cg-variables will be on day t. One further
point needs to be made, however, when we look at the variables in the red
tile Cr ≡ (S1 ∩ S2)\S3, because the procedure just detailed for tile Cg could
be applied in two different ways: do we

• compare M1, M2 on S1 ∩ S2, then take the (S1 ∩ S2)\S3-marginal?

• or compare M1, M2 on (S1 ∩ S2)\S3?

4When P is the identity, we recover (2).
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Principle (P0) tells us to do the first of these; we make comparison of models
M1 and M2 on all the variables they have in common, and then marginalize
the distributional statement to those variables that they share with no other
model.

To summarize then, we have just described how we construct the predic-
tive distribution each day for the variables in each of the tiles separately. But
as yet we have not determined how we combine these to make a predictive
distribution for all of the variables at once. Doing this is clearly the essence
of the problem, because we have to decide what the co-dependence of the
variables in different tiles will be in order to make portfolio choices.

Remarks. At first sight, we can easily reduce the problem to one where
all of the predictive distributions speak about all of the variables - for any
variables not in Sα, we just say that model Mα predicts a large-variance zero-
mean return! This gets round the mathematical issues at the cost of turning
the problem into nonsense. Why? Suppose that we have just two models,
M1 which makes statements about all of the asset returns, and M2 which
makes statements about only asset 1. We could expand M2 to speak about
all the assets by saying that its predictions for the others are just noise, but
the problem is that if M2 happens to predict asset 1 much better than M1,
then we would end up with most posterior weight on M2. We would then
believe that we had no useable information about any of the assets other
than asset 1, whereas in fact M1 might be telling us some quite valuable
information about them.

3 Combining distributions.

The situation then is this. We have for each model Mα a predictive distri-
bution mα

t for the Sα-variables on day t; we have for each tile Cj a predictive
distribution qjt for the Cj-variables on day t, obtained by Bayesian model
averaging. How do we come up with a distribution q ∈ P(RN) with the
properties:

(P1) For each j = 1, . . . , J, the Cj-marginal of q is qjt ;

(P2) The co-dependence of the different tiles is inherited from the co-dependence
of the mα

t ?

For notational convenience, we will henceforth abbreviate mα
t to mα, and

qjt to qj, as the time index is immaterial. Of course, property (P2) of the
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construct q is not defined as yet, and the essential issue is to try to give a
reasonable and precise meaning to this.

Let us first look only at the tiles C1, . . . , CJ which make up Sα; we want
to make a distribution µ for the variables5 Y [Sα] which satisfies (P1) and
(P2). We could of course ensure property (P1) simply by taking the product
measure

µ = q1 ⊗ . . .⊗ qJ

but this ignores any information about co-dependence which there might be
in mα. We want to construct some measure µ which is as ‘near’ as possible
to mα while satisfying property (P1). The sense of closeness we propose here
is closeness in relative entropy - other choices could be made, but this is a
very natural one, and is widely used. So we will determine the measure µ by
solving the problem

minH(µ|mα) subject to µCj = qj ∀j, (4)

where µA denotes the A-marginal of µ, and as usual

H(µ|m) ≡
∫

dµ

dm
log

(
dµ

dm

)
dm.

With a minor abuse of notation, we shall write

H(f |m) =

∫
f log(f) dm (5)

when f is a probability density with respect to m, or even H(f) if the refer-
ence measure m does not need to be clarified.

To ensure that problem (4) is well-posed, we have the following result.

Proposition 1. Assume that there exists some measure µ with µCj = qj for
all j = 1, . . . , J for which the relative entropy H(µ|mα) is finite. Then the
problem (4) has a unique solution.

Proof. Let S denote the set of all densities f for which the relative entropy

H(f |mα) ≡
∫
f log f dmα

is finite, and for which the Cj-marginal is the given measure qj∫
f(x) mα(dx[∼ Cj]) = qj(x[Cj]) ∀j, (6)

5We use the (Python) convention that X[A] denotes the subvector {Xi : i ∈ A} of the
vector X.
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where x[∼ Cj] denotes the subvector of x on the complement of Cj. The set
S is a convex subset of L1

+(mα), non-empty by assumption. If b = inf{H(f) :
f ∈ S}, we can find fn ∈ S such that H(fn) < b + 2−n. The family (fn) is
clearly uniformly integrable, so we may apply a version of Komlos’ Theorem
(see Lemma 2.1 in [2]) to conclude that there exist gn ∈ conv(fn, fn+1, . . .)
which converge in L1 to some limit g. But since S is convex, the gn are in S,
and it is immediate that the limit is also; the marginals are as given by (6).
By Fatou’s Lemma, we conclude that H(g) = b, and the infimum is attained.

Finally, if g1 and g2 are two minimizers, we have that for λ ∈ [0, 1] the
function ḡ = λg1 + (1 − λ)g2 is in S. Writing ϕ(x) = x log(x), we deduce
that

b ≤
∫
ϕ(ḡ) dmα ≤

∫
{λϕ(g1) + (1− λ)ϕ(g2)} dmα = b. (7)

Strict convexity of ϕ implies that mα(g1 = g2) = 1.

This tells us what to do if we were just concerned with a single Sα which
was split into tiles, but we need to deal with the whole set S = ∪αSα. What
we propose to do therefore is to seek some probability µ so as to

min
K∑
α=1

H(µSα|mα) subject to µCj = qj ∀j. (8)

The argument of Proposition 1 which showed that the minimum is attained
by a unique minimizer runs into technical issues, which are illustrated by
simple examples.

Example 1. Suppose that fn is the density of a bivariate normal distribution
with mean 0 and covariance

V =

(
1 ρn
ρn 1

)
,

where the ρn increase to 1. Then the 1-marginal densities of the fn are a
uniformly integrable family, as are the 2-marginal densities, but the family
(fn) is not uniformly integrable.

This shows that we will not be able to re-run the argument of Proposition 1
for problem (8), because this argument required uniform integrability of the
densities, not just of their marginals.

A second issue arises, illustrated by the next example.

Example 2. Suppose that K = 2, S1 = {1, 2}, S2 = {2, 3}, and that the
model distributions m1, m2 are both bivariate N(0, I). Suppose further that
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the predictive distributions for each of the three tiles are a standard N(0, 1)
law. Then for any a ∈ (−1, 1) the law

N

(
0,

1 0 a
0 1 0
a 0 1

) (9)

is a minimizer of the objective (8) (it achieves value 0), and satisfies the
marginal law constraints on each tile. Therefore we cannot hope for unique-
ness of the solution to problem (8), and the family of solutions will not in
general be uniformly integrable.

To deal with these issues then, we propose to modify the problem (8) to
the following:

min
µ

K∑
α=1

H(µSα|mα) + εH(µ| ⊗Jj=1 q
j) subject to µCj = qj ∀j. (10)

Here, ε > 0 is some chosen positive parameter. This choice is arbitrary, and
undesirable; the inclusion of this term is required to prevent degeneracy. It
may be that we can deal directly with problem (8), but Example 2 shows
that even if we could prove that a minimizer exists, we would in general need
to make an arbitrary choice of minimizer, so some arbitrary choice cannot be
avoided - but, as we shall see, we may be able to get around this. Granted this
modification of the objective, we have the following analogue of Proposition
1, whose proof is the same as the proof of Proposition 1.

Proposition 2. Assume that there exists some measure µ with µCj = qj for
all j = 1, . . . , J for which the relative entropy H(µ| ⊗Jj=1 q

j) is finite. Then
the problem (10) has a unique solution.

Can we get a clearer picture of what the solution to problem 10 looks like?
We can indeed, but to describe it we need some notation. So suppose that
with respect to some product measure dx the measures mα have densities fα,
and the tile marginals qj have densities ϕj. We shall abbreviate

ϕ̄(x) ≡
∏
j

ϕj(x[Cj]) (11)

for the reference density. Let gα denote the Sα marginal density of µ, so that
the objective to be minimized in (10) can be written

Z =
∑
α

∫
gα(x[Sα]) log

(
gα(x[Sα])

fα(x[Sα])

)
dx[Sα] +

+ε

∫
g(x){ log g(x)− log ϕ̄(x) } dx, (12)
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where of course the function g is the density of the unknown measure µ. The
constraints

gα(x[Sα]) =

∫
g(x) dx[∼ Sα] (13)

ϕj(x[Cj]) =

∫
g(x) dx[∼ Cj] (14)

must also be satisfied. We then have the following characterization of the
optimal density g.

Theorem 1. The density g of the optimal solution to problem (10) is repre-
sented as

g(x) ∝ exp

[
1

1 + ε

∑
α

log fα(x[Sα])+
ε

1 + ε

∑
j

{ ε−1ηj(x[Cj])+logϕj(x[Cj]) }
]
,

(15)
where the functions ηj are determined up to additive constants by the con-
straints (14).

Proof. We shall absorb the constraints (13) with Lagrange multipliers λα(x[Sα])
and the constraints (14) with Lagrange multipliers ηj(x[Cj]) to construct the
Lagrangian

L = Z +
∑
α

∫
λα(x[Sα]){ gα(x[Sα])−

∫
g(x) dx[∼ Sα] } dx[Sα] +

+
∑
j

∫
ηj(x[Cj]){ϕj(x[Cj])−

∫
g(x) dx[∼ Cj] } dx[Cj]

=
∑
α

∫
gα(x[Sα]) log

(
gα(x[Sα])

fα(x[Sα])

)
dx[Sα] +

+ε

∫
g(x){ log g(x)− log ϕ̄(x) } dx+

+
∑
α

∫
λα(x[Sα]){ gα(x[Sα])−

∫
g(x) dx[∼ Sα] } dx[Sα] +

+
∑
j

∫
ηj(x[Cj]){ϕj(x[Cj])−

∫
g(x) dx[∼ Cj] } dx[Cj].

Minimizing L over gα gives the first-order condition6

0 = 1 + log(gα/fα) + λα, (16)

6... now omitting arguments except where the meaning is unclear ..
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and minimizing L over g gives the first-order condition

0 = ε[log g − log ϕ̄+ 1]−
∑
α

λα −
∑
j

ηj. (17)

From these conditions, we deduce expressions for gα and g in terms of the
unknown multipliers λα and ηj:

gα(x[Sα]) ∝ fα(x[Sα]) exp{−λα(x[Sα]) } (18)

g(x) ∝ ϕ̄(x) exp{ ε−1
∑
α

λα(x[Sα]) + ε−1
∑
j

ηj(x[Cj]) }

= exp{ ε−1
∑
α

λα(x[Sα]) +
∑
j

( ε−1ηj + logϕj)(x[Cj]) }.(19)

Integrating (19) over x[∼ Sα] reveals that

gα(x[Sα]) ∝ exp{ ε−1λα(x[Sα]) +
∑

j:Cj⊆Sα

( ε−1ηj + logϕj)(x[Cj]) }. (20)

Comparing with (18) now shows us that7

log fα(x[Sα])
.
= (1 + ε−1)λα(x[Sα]) +

∑
j:Cj⊆Sα

( ε−1ηj + logϕj)(x[Cj]). (21)

Summing (21) over α now tells us that

(1 + ε−1)
∑
α

λα
.
=
∑
α

log fα −
∑
j

( ε−1ηj + logϕj), (22)

or equivalently that

ε−1
∑
α

λα
.
= (1 + ε)−1

∑
α

log fα − (1 + ε)−1
∑
j

( ε−1ηj + logϕj). (23)

Substituting this into (19) gives the stated form (15).

Remarks. 1. A first glance at the form of the solution (15) for g might
lead one to believe that by integrating out x[∼ Cj] and using the constraint
(14) we will obtain explicitly what ηj is, and therefore have a very concrete
representation of the solution. But unfortunately when we integrate over

7The symbol
.
= denotes that the two sides differ by a constant.
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x[∼ Cj] the integration involves the values of ηi for i 6= j, and so what we
obtain is an implicit characterization of the ηi.

2. If we take the expression (15) for the optimal g and formally let ε tend to
zero, we find the much simpler expression

g(x) ∝ exp
[∑

α

log fα(x[Sα]) +
∑
j

ηj(x[Cj])
]
. (24)

For the reasons explained above, this formal passage to the limit may not
deliver an optimal g, and the ηj in any case depend on ε so there are issues
there also. Nevertheless, the simple structural form (24) is appealing, and
may provide a good place to start looking.

Multivariate Gaussian distributions.

A very important special case which can be reduced to a matrix equation
is the case where all the distributions are multivariate Gaussian. This is
important because of the following result.

Theorem 2. With the notation of Theorem 1, if the densities fα and ϕj are
all Gaussian, then the multipliers λα and ηj are quadratic functions.

Proof. For brevity, write ηj + ε logϕj ≡ hj. Then rearranging (21) gives us

λα(x[Sα])
.
=

ε

1 + ε
log fα(x[Sα])− 1

1 + ε

∑
{j:Cj⊆Sα}

hj(x[Cj]). (25)

Rearranging (19) gives us that

ε log g(x)
.
=

∑
α

λα(x[Sα]) +
∑
j

hj(x[Cj])

.
=

ε

1 + ε

[∑
α

log fα(x[Sα]) +
∑
j

hj(x[Cj])

]
, (26)

using (25). Moreover, from (18) using (25) we deduce that

log gα(x[Sα])
.
=

1

1 + ε

[
log fα(x[Sα]) +

∑
{j:Cj⊆Sα}

hj(x[Cj])

]
. (27)
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Now gα is the Sα-marginal of g, so we have

gα(x[Sα]) ∝ exp

(
1

1 + ε

[
log fα(x[Sα]) +

∑
{j:Cj⊆Sα}

hj(x[Cj])

] )
=

∫
g(x) dx[∼ Sα]

∝
∫

exp

(
1

1 + ε

[∑
β

log fβ(x[Sβ]) +
∑
j

hj(x[Cj])

] )
dx[∼ Sα],

so cancelling out common factors leads to the conclusion that

1 ∝
∫

exp

(
1

1 + ε

[∑
β 6=α

log fβ(x[Sβ])+
∑

Cj∩Sα=∅

hj(x[Cj])

] )
dx[∼ Sα]. (28)

To spell it out, the right-hand side of (28) does not change as we vary x[Sα].
The only place in the right-hand side of (28) where entries of x[Sα] appear
is in the sum

∑
β 6=α log fβ(x[Sβ]), which is a quadratic function. All the

terms which are second order in x[Sα] can therefore be put to the other
side of (28), leaving on the right-hand side only terms linear in x[Sα] in
the exponent. We now interpret the right-hand side of (28) as the Laplace
transform of some function; the transform is exponential-quadratic, so the
transformed function must be exponential-quadratic. This tells us that the
hj must be quadratic functions, and therefore that the ηj are quadratic, since
the logϕj are quadratic by hypothesis. Immediately from (25) we see that
the λα are also quadratic functions.

So we suppose that model Mα states that the law of Y [Sα] will be
N(bα,Σα), and the tile marginal for Cj is also a multivariate Gaussian
N(aj, Qj). Since we demand that the tile marginals of g are the laws qj,
there is no freedom for the means of g, so without much loss of generality
we shall for clarity of exposition suppose that the bα and the aj are all zero,
leaving us to consider only centred Gaussians. The multipliers ηj will also
be centred Gaussians,

ηj(x[Cj]) = 1
2
x[Cj] ·Wj x[Cj] (29)

for some symmetric (though not necessarily positive-definite) matrices Wj.
The form (15) of the optimal g will now give us

2(1 + ε) log g(x)
.
= −

∑
α

x[Sα] · Σ−1α x[Sα] +
∑
j

x[Cj] · (Wj − εQ−1j )x[Cj]

= −x ·V x+ x ·W x, (30)
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where we write W for the unknown block-diagonal matrix of the Wj, and V
for the remaining (positive-definite) terms of the quadratic form. It is now
clear that we must choose the Wj so that for all j the Cj-diagonal block of
(1 + ε)(V −W)−1 is the given covariance matrix Qj. Determining the Wj

given the Σα and the Qj appears to be a challenging numerical problem.
The approach used in the following numerical study minimized the relative
entropy numerically, but a direct method would be good.

A numerical study.

This study worked with 10 years of daily price data on 35 major US stocks,
and proposed three models, each making statements about exactly 20 of the
stocks. In each of the non-empty subsets of the Venn diagram below there
were 5 stocks, the allocation of stocks to subsets being arbitrary. Without
going into the exact details, each model generated a predictive distribution
each day, and the Bayesian combination was used to come up with a predic-
tive distribution for each equivalence class Cj of variables.

S1

S2

S3

This predictive distribution was of course a mixture distribution, in fact, a
mixture of multivariate Gaussians. The combination of the predictive dis-
tributions was done by pretending that each predictive distribution was a
multivariate Gaussian with matching mean and covariance, and then using
the results of the previous subsection to come up with an overall mean µ̄ and
covariance V̄ for the predicted distribution of all 35 asset returns. Then the
portfolio of the assets used was simply V̄ −1µ̄. Not very much can be con-
cluded from the output Figure 1, except that the realized gains seem to have
behaved quite sensibly, without any large jumps or swings. The allocation of
assets to models was quite arbitrary, so we would not expect that anything
particularly good would result; with some more guidance over the choice of
variables for models, we may well be able to produce some more interesting
P& L plots, but the point to note is that this methodology does give a way
to combine small models into a sensible algorithm for dealing with a much
larger set of assets, which was the goal of the study.
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Figure 1: Cumulative P& L of mean-variance strategy using the combination
predictive distribution.

4 Conclusions.

The problem of making a good portfolio from a large number of assets is
an important and challenging one; this paper offers an approach that envis-
ages that the big problem is first broken down into smaller more manage-
able problems. The key feature is that we do not need to suppose that the
smaller problems make statements about disjoint sets of assets, but rather
that understanding of co-dependence of assets can come from multiple sepa-
rate models which each embody some part of the co-dependence of different
assets.

The given models naturally partition the assets into equivalence classes
(tiles) on which standard Bayesian model averaging can be applied. We
have developed an entropy-minimization method of combining the measures
on different assets into a consensus measure. Performing the optimization
under constraints on the marginal laws on the individual tiles leads us to the
overall combination.
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