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An investor may invest in a riskless bank account, and in a stock which is a standard Black-Scholes asset
with occasional Gaussian jumps of the log price, as proposed by [16]. It is well known how to solve the
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1. Introduction In this paper, we consider two types of partially-informed insider traders.

The first type of insider knows in advance of each jump exactly when the jump will happen, but

not its size. This may model one who knows the timing of a public announcement that the CEO

of his firm will resign. The second type of insider we will consider has information in advance of

each jump about the size of the jump, but has no information about when it will occur. Let the

jump size be ξ and further assume that the insider knows η, where (ξ, η) has a joint Gaussian

law. This may be a plausible model for the insider who has some knowledge about a similar firm

exposed to similar influences, leading him to know η for his own firm, which in turn gives him some

information about ξ.

On a macro level, the knowledge gained by the first insider may model the scenario in which

there is going to be an election in a major country on a known date. The story of the second

insider may be used to model the situation where we have some idea what will follow the death of

a despotic leader, but no idea when he will die.

Let us now formalize the above considerations. Consider a continuous-time model of investment

and consumption, where an agent may invest in a risk-free bank account, paying interest at fixed

positive rate r > 0, and in a risky asset, the stock S. The dynamics of the stock are given by

dSt = St−
[
σdWt +µdt+

∫
(ex− 1) n(dt, dx)

]
, (1)
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where W is a standard Brownian motion, σ > 0 is the (constant) volatility, µ is the (constant) drift
and n is a Poisson random measure independent of W with expectation measure

E [n(dt, dx)] = λdt p(x)dx.

Here, λ> 0 is the rate at which events occur, and p is the density of the jump in log-price, which
we assume is distributed as N(m,v), where m is the mean of the normal distribution and v is
the variance of the normal distribution. The standard Black-Scholes model is a special case when
m= v= 0, but more generally this model of Black-Scholes with jumps appears to date back to [16].

The wealth of the investor at time t is denoted by wt, and his rate of consumption at time t is
denoted by ct ≥ 0. At time t, the investor chooses his consumption rate ct and the quantity θt of
his wealth to be invested in the stock1. His wealth therefore evolves as

dwt = (rwt− ct)dt+ θt
[
σdWt + (µ− r)dt+

∫
(ex− 1) n(dt, dx)

]
, (2)

with initial wealth w; for an explanation, see, for example, Section 1.1 of [20]. Controls (c, θ) will
be said to be admissible if they are previsible and if wt ≥ θt ≥ 0, ct ≥ 0 for all t; the set of admissible
controls for initial wealth w will be denoted A(w). The objective of the agent is to choose the
controls (c, θ) in such a way as to achieve

V (w)≡ sup
(c,θ)∈A(w)

E
[∫ ∞

0

e−ρtU(ct) dt |w0 =w

]
, (3)

where ρ is the time discounting factor. We assume that the utility U has CRRA form

U(x) =
x1−R

1−R

for some R> 0 different from 1. As usual, this reduces the dimensionality of the problem by one,
and renders it more amenable.

We shall treat three problems, which differ in the information available to the agent.
1. The agent has no prior knowledge about when the jumps occur, nor of their magnitudes;
2. The agent knows precisely the time of the next jump, but not the magnitude;
3. The agent knows nothing about the time of the next jump, but sees the signal

η= ξ+ ε

where ξ is the jump in the log-price at the next jump, and ε is an independent N(0, vε) random
variable.

Of course, the optimal value for Problems 2 and 3 must be at least as big as the optimal value
for Problem 1, as we shall see, but there is no reason to suppose that Problem 2 will be better
than Problem 3, or vice versa. In Section 3, we indeed show that for realistic parameter values
that knowing the magnitude of each jump, albeit with noise, is far more valuable than knowing the
time of the jump. In particular, Problems 2 and 3 are concrete, challenging, and are not amenable
to direct application of general theory — which is why they would have appealed to Larry Shepp.

We attack the above problems as stochastic optimal control problems. This being said, we wish to
note that these problems can of course (but need not) be considered as an example of grossissement
— the enlargement of filtrations. This theory was developed from the late 1970’s on, starting with
the works of [3], Jeulin & Yor ([11, 12, 13]) and further developed by others including [22], and by

1 The processes c and θ are measurable with respect to the previsible σ-field P of (W,n); see, for example, [21].
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Itô’s extension of the stochastic integral (see [9]). The topic has an intimate connection with insider
trading, which is well addressed by the recent book of [2], and the over 100 references therein.
Observing that Problems 2 and 3 can be regarded as instances of grossissement does not appear
to make solving them any easier.

We conclude the section with a brief literature overview. Our Problem 1 has been extensively
considered; it is a special case of the work of [1] and [7]; the former analyzes a multi-dimensional
version of our Problem 1 with a more general jump diffusion, while the latter considers a jump
diffusion market with proportional transaction costs. [18] considers a version of our Problem 1
allowing for infinite variation price jumps, constraints, etc and [17] provides general verification
results for semimartingale price processes, albeit these results cannot be applied directly for the
verification proofs of Problems 2 and 3. We also acknowledge the work of [8], which looks at a very
similar problem to our Problem 1. Other works related to our Problem 1 include those of [5], [6],
[14] (in particular, Section 10). Other related works to the paper are [19], which considers a market
where the price process is fixed. To the best of our knowledge, there is nothing in the literature
remotely close to Problems 2 and 3. For each problem, rigorous verification proofs for optimality
are presented.

The remainder of this manuscript is organized as follows. Section 2 formulates and solves the
Hamilton-Jacobi-Bellman (HJB) equations for Problems 1-3. Section 3 offers numerical results.
As is often the case with concrete stochastic control problems, the most challenging technical
difficulties lie in the verification proofs, which are provided in the Appendix.

2. Main Results Throughout this section, we will need the function

q 7→ g(q)≡
∫
{1 + q(ex− 1)}1−R p(x) dx, (4)

which is plainly a smooth monotone function defined for 0 ≤ q ≤ 1, concave for 0 < R < 1 and
convex for R> 1.

2.1. Solution of Problem 1. The solution to Problem 1 is a simple modification of the
solution to the standard Merton problem without jumps. By the Davis-Varaiya Martingale Principle
of Optimal Control (MPOC) - see, for example, Theorem 1.1 in [20] - if we can find a function V
such that

Yt ≡
∫ t
0
e−ρsU(cs) ds+ e−ρtV (wt) is a supermartingale for all (c, θ)∈A(w0)

and a martingale for some (c̄, θ̄)∈A, then V is the value function defined in (3) and (c̄, θ̄) is optimal.
Using the symbol

.
= to signify that the two sides of the expression differ by a local martingale, we

apply Itô’s formula to Y to give2

eρtdY
.
= {U(c)− ρV (w) + (rw− c+ θ(µ− r))V ′(w) + 1

2 σ
2θ2V ′′(w) }dt

+

∫
{V (wt−+ θt(e

x− 1))−V (wt−)} n(dt, dx)
.
= {U(c)− ρV (w) + (rw− c+ θ(µ− r))V ′(w) + 1

2 σ
2θ2V ′′(w)

+λ

∫
{V (w+ θ(ex− 1))−V (w)}p(x) dx } dt. (5)

We want Y to be a supermartingale whatever the control, and a martingale under some (optimal)
control, so if we ignore the distinction between martingales and local martingales the condition
would be that the supremum over (c, θ) of the drift term in (5) should be zero:

0 = sup
c,θ

[
U(c)− ρV (w) + (rw− c+ θ(µ− r))V ′(w) + 1

2 σ
2θ2V ′′(w)

2 We omit uninformative appearances of the time index.
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+λ

∫
{V (w+ θ(ex− 1))−V (w)}p(x) dx

]
, (6)

and this is the Hamilton-Jacobi-Bellman (HJB) equation for this problem.
A familiar scaling argument (see, for example, Proposition 1.2 in [20]) shows that the value

function V should be a multiple of U :

V (w) =A1U(w) (7)

for some constant A1, and this gives us a way of solving the HJB equation (6). Assuming the
scaling form (7) of the solution, optimizing over c in (6) gives

c̄=A
−1/R
1 w.

Writing θ= qw and substituting this value of c, straightforward algebra transforms the HJB equa-
tion (6) to

0 = sup
q
A1U(w)

[
RA

−1/R
1 − ρ− (R− 1)(r+ q(µ− r)) + 1

2 σ
2q2R(R− 1)

+λ{g(q)− 1}
]
.

This is optimized over q by choosing q to maximize

q 7→ g1(q)≡ r+ q(µ− r)− 1
2 σ

2Rq2 +λ{g(q)− 1}/(1−R). (8)

The function g1 is concave in q, so maximizing it (numerically) is quite easy. We need to be aware
that q is constrained to lie in [0,1], so the optimizing value could be an endpoint of the interval.
Denoting the optimal q by q̄1, we have finally the equation

0 =RA
−1/R
1 − [ ρ+ (R− 1){r+ q̄1(µ− r))− 1

2 σ
2(q̄1)

2R} ] +λ{g(q̄1)− 1},

which determines the value of A1:

RA
−1/R
1 = ρ+ (R− 1)g1(q̄1). (9)

In the special case λ= 0, we are back with the original Merton problem, where the q which optimizes
(8) is the Merton proportion

πM ≡
µ− r
σ2R

(10)

and the expression for A1 agrees with the known solution for that special case - see (1.30) in [20].
It is possible for the standard Merton problem to have unbounded payoff in the case 0< R < 1,
which corresponds to the right-hand side of (9) being non-positive, and the same can happen here.

To summarize, then, we have the following result.

Theorem 1. Provided ρ+ (R− 1)g1(q̄1)> 0, Problem 1 is well posed and the optimal solution
is to use controls

c̄t =A
−1/R
1 wt, θ̄t = q̄1wt

where q̄1 maximizes the function g1 given at (8) over [0,1], and A1 is given by (9). The value
function is

V (w) =A1U(w).

Proof By solving the HJB equation, we have identified what we believe is the optimal control
for this problem. What remains is to verify that this is indeed the optimal solution. We do this in
the Appendix A.1. �
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2.2. Solution of Problem 2. Problem 2 considers the first type of insider agent, who knows
the time T1 of the first jump of the stock, and immediately each jump happens he is told the
time of the next jump. Since the problem is time inhomogeneous, the value function should be
parameterized by w and t. Immediately after T1, the process restarts afresh; the time T2 of the
next jump is revealed and the difference T2−T1 is an exp(λ) random variable independent of the
past. Hence, it suffices to consider the value function

V (t,w;T1)≡ sup
(c,θ)∈A(w)

E′
[∫ ∞

t

e−ρ(s−t)U(cs) ds | T1,wt =w

]
, t∈ [0, T1). (11)

where E′ denotes the expected value for the first type insider. Again a scaling argument shows that
the value function up to T1 has the form

V (t,w;T1) = f(T1− t)U(w), t∈ [0, T1). (12)

Since T1 ∼ exp(λ), the unconditional expected value of V (0,w) would be

V (0,w) =

∫
λe−λsf(s) ds U(w)≡A2U(w).

The behaviour of the investor has two elements. He is able to choose the fraction a of his wealth
to hold in stock from the time T1− to T1, during which infinitesimal interval the log-price jumps
by X, say. His wealth will jump from wT1− to wT1−(1 +a(eX −1)); the utility of his wealth will get
scaled by a factor {1 + a(eX − 1)}1−R, so he will therefore choose

a∗ ≡ arg max
0≤a≤1

g(a)/(1−R) (13)

to maximize his expected gain in utility at the time of the jump, and thus

E′
∫ ∞
t

e−ρ(s−t)U(cs) ds=E′
[∫ T1

t

e−ρ(s−t)U(cs) ds+ e−ρ(T1−t)g(a∗)A2U(wT1−)

]
.

By (11) and (12), the above equality further implies

f(0+) = g(a∗)A2 = g(a∗)

∫ ∞
0

λe−λsf(s) ds. (14)

This relation will be needed to characterize the solution. Prior to T1, we invoke the MPOC to
assert that

Yt ≡
∫ t
0
e−ρsU(cs) ds+ e−ρtV (t,wt) is a supermartingale,

and a martingale under optimal control. As previously, an application of Itô’s formula leads to the
HJB equation for this problem:

0 = sup
c,θ

[
U(c)− ρV (t,w) + (rw− c+ θ(µ− r))V ′(t,w)

+ 1
2 σ

2θ2V ′′(t,w) + V̇ (t,w)
]
, (15)

where V ′, V ′′ denote the derivatives with respect to w and V̇ denotes the derivative with respect
to t. The explicit form (12) of the value simplifies the HJB equation substantially; the optimal
choices are

c̄t = f(T1− t)−1/Rwt, θ̄t = πM wt.
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Substituting this back into (15) simplifies the equation to

0 =Rf1−1/R−RγMf − ḟ , (16)

where
γM ≡ {ρ+ (R− 1)(r+ (µ− r)2/2Rσ2)}/R (17)

is the optimal consumption rate in the standard Merton problem. Writing f(t) = ψ(t)R linearizes
(16) to

0 = 1− γMψ− ψ̇
which can be solved explicitly. The solution is

f(t) =

(
1− e−γM t

γM
+ e−γM t f(0)1/R

)R
. (18)

The initial value f(0) is not determined by the differential equation (16), but the boundary condi-
tion (14) determines it when there is a solution. To explain in more detail, define the function

x 7→ϕ(x)≡ g(a∗)

∫ ∞
0

λe−λs
(

1− e−γM s

γM
+ e−γM s x1/R

)R
ds, (19)

so that f(0) is a fixed point of ϕ. Two cases now need to be considered.

Case 1: 0<R< 1. In this case, ϕ is convex positive increasing, and g(a∗)> 1. We also see that
ϕ(x)/x decreases from +∞ to limit λg(a∗)/(λ+RγM), so there will be a fixed point of ϕ if and
only if

λg(a∗)

λ+RγM
< 1. (20)

One way to interpret condition (20) is to say that λ must not be too big. If λ is too big, we get
frequent opportunities to benefit from the jumps, and if these opportunities come too often then
the boost to the objective will defeat the discounting and we can obtain unbounded objective. It
is not surprising that the problem can be ill posed when R ∈ (0,1), as the original Merton problem
can also be ill posed in this regime - see Proposition 1.3 in [20].

Case 2: R > 1. In this situation, g(a∗) < 1 and ϕ(x)/x is once again decreasing from +∞ to
λg(a∗)/(λ + RγM). A unique fixed point of ϕ therefore exists provided (20) holds - but this is
guaranteed since g(a∗)< 1.

We summarize this in the following result.

Theorem 2. Let T1 denote the time of the first jump of the stock, known to the investor from
time t= 0. Problem 2 is ill posed if 0<R< 1 and

λg(a∗)

λ+RγM
≥ 1.

Otherwise, the optimal controls are characterized as follows.
• θ̄t = πMwt for 0≤ t < T1;
• θ̄T1 = a∗wT1− ;
• c̄t = f(T1− t)−1/Rwt for 0≤ t < T1,

where πM is the Merton proportion (10), a∗ is the maximizer in (13), f is the function given by
(18), and f(0) is the unique fixed point of the function ϕ given by (19).

The time T1 is a renewal time, and the solution after T1 conforms with the solution stated above
for [0, T1] throughout the interval [T1, T2], and recursively thereafter.

Proof By solving the HJB equation, we have identified what we believe is the optimal control
for this problem. We verify that this is an optimal solution in the Appendix A.2. �
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2.3. Solution of Problem 3. In the third version of the problem, the investor has some
advance information about the magnitude ξ of the first jump of the Poisson random measure n,
which comes at time T1 about which he knows only the distribution. Specifically, the investor
receives the signal

η= ξ+ ε

where ε∼N(0, vε) independent of everything else. Note that for ε= 0 there would be arbitrage. It
is a routine calculation to derive the distribution of ξ given η:

(ξ|η)∼N
(
vη+ vεm

v+ vε
,
vvε
v+ vε

)
. (21)

Let E′′ denote the expected value for the second type of insider trader considered. The standard
scaling argument tells us that the value function given the signal η will separate as

V (w;η)≡ sup
(c,θ)∈A(w)

E′′
[∫ ∞

0

e−ρtU(ct) dt | η,w0 =w

]
= h(η)U(w),

for some function h to be determined. After the nth jump at time Tn, the investor receives a new
signal, independent of the past, about the magnitude of the (n+ 1)th jump at time Tn+1, and the
process continues.

Consider what happens at time T1. Let w denote the wealth of the investor just before T1, and q
the fraction of his wealth invested in the stock just before time T1. The jump ξ in log-price causes
the wealth of the investor to change to w(1 + q(eξ − 1)), so the value to the investor changes at
time T1+ from h(η)U(w) to

(1 + q(eξ − 1))1−R U(w)h(η′),

where η′ is the new signal about the magnitude of the jump at time T2. Thus the expected value
to the investor at time T1+ will be

U(w)

∫
(1 + q(ex− 1))1−R P(dx|η)

∫
h(y)P0(dy), (22)

where P denotes the distribution in (21) and P0 denotes the N(m,v+vε) distribution. Introducing
the notation

A3 =

∫
h(y)P0(dy),

the value to the investor unconditional on η is V (w) = A3U(w), and the expected value at time
T1+ is expressed as

A3U(w)

∫
(1 + q(ex− 1))1−R P(dx|η) ;

of course, determining the value of A3 is a major part of solving the problem. Analogously to (4),
we define

g(q, η)≡
∫

(1 + q(ex− 1))1−R P(dx|η),

so that the expected change in value at time T1 can be more compactly expressed as

U(w){A3 g(q, η)−h(η) }.

Using the MPOC once again, we derive similarly the HJB equation for this problem up until the
time T1:

0 = sup
c,q

[
U(c)− ρV + (rw− c+ qw(µ− r))V ′+ 1

2 σ
2w2q2V ′′

+λU(w){A3 g(q, η)−h(η) }
]
. (23)
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The optimization over c goes as before; we obtain

c̄= h(η)−1/Rw.

Returning this to (23) leads to the equation

0 = sup
q
U(w)

[
Rh(η)1−1/R−h(η)

(
ρ+ (R− 1){r+ q(µ− r)−

− 1
2 σ

2q2R}
)

+λ{A3 g(q, η)−h(η) }
]
. (24)

At first sight, this looks hard to tackle, because when we attempt to optimize over q we do not
know h(η), or A3. We shall deal with this using value improvement, by successively solving the
optimization problem where we obtain a signal only for the first n jumps, n= 0,1, . . .. The usual
scaling applies, and the value for the problem when we receive n signals in total will be of the form

Vn(w;η) = hn(η)U(w).

Of course, when n= 0, we already have the solution - this is Problem 1, so we know that h0(η)≡A1,
as given at (9). Clearly the more signals we get, the better we will be able to do, so for each η the
sequence hn(η) is monotone, and therefore a limit h∞(η)≡ limn hn(η) exists. In the case R ∈ (0,1),
this limit might be infinite, in which case the problem is ill posed, but in the case R> 1 the value
is non-positive, so the finite limit does exist.

The value-improvement solution is expressed in terms of a solution to a simpler problem, which
we now present and solve. For simplicity of exposition, we assume from now on that

R> 1, πM ∈ (0,1). (25)

This avoids the need to discuss technical details; likely, the assumptions (25) are not needed, but
realistic values of R are in any case above 1.5 [10, 15] so any interesting case is covered by (25).

A simpler problem. Suppose that wealth evolves as

dwt = rwt dt+ qtwt(σdWt + (µ− r)dt)− ctdt (26)

up until random time T1 ∼ exp(λ). At T1, the log-price jumps by ξ ∼N(m′, v′), so that

wT1 =wT1−{1 + q(eξ − 1)}, (27)

where q= qT1− is the fraction of wealth in the risky asset just before the jump. After T1, everything
stops, and the agent receives utility BU(wT1) for some constant B > 0. The first thing to do is to
characterize the value to an ordinary trader with no information about ξ,

Ṽ (w)≡ Ṽ (w;B,m′, v′) = sup
c,q

E
[∫ T1

0

e−ρsU(cs) ds+ e−ρT1BU(wT1)

∣∣∣∣w0 =w

]
, (28)

and to prove that this is the value. The usual scaling argument will give us that

Ṽ (w;B,m′, v′) =H(B,m′, v′)U(w)

for some function H. The HJB equation for this problem is derived exactly as the HJB equation
for Problem 1; we find that

0 = sup
q
U(w)

[
RH1−1/R− (ρ+λ)H + (1−R)H{r+ q(µ− r)}−

− 1
2 R(1−R)Hσ2q2 +λB

∫
(1 + q(ex− 1))1−R P(dx|m′, v′)

]
, (29)
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where P(dx|m′, v′) denotes the distribution N(m′, v′). We express this more compactly as

0 = sup
0≤q≤1

[
RH1−1/R

1−R
+Hψ1(q) +λBψ2(q;m

′, v′)

]
, (30)

where we define the functions

ψ1(q) = r+ q(µ− r)− 1
2 σ

2q2R− ρ+λ

1−R
,

ψ2(q;m
′, v′) =

∫
U(1 + q(ex− 1)) P(dx|m′, v′),

both concave functions of q. Notice the bounds

ψ1(q) ≤ α1 ≡ψ1(πM)> 0 (31)
ψ2(q;m

′, v′) ≤ α2(m
′, v′)≡ sup

0≤y≤1
ψ2(y;m′, v′)< 0. (32)

Stated equivalently, the HJB equation (30) to be solved is

H1−1/R

1− 1/R
= sup

0≤q≤1

[
Hψ1(q) +λBψ2(q;m

′, v′)

]
. (33)

The left-hand side of (33) is a concave function of H, increasing from 0 to ∞ with first derivative
approaching 0. The right-hand side is a convex function of H (the supremum of a family of linear
functions) which is negative for H in a neighbourhood of zero because of (31), (32) and for large H
grows at least as fast as α1H, which we would get by taking q= πM . Note that by assumption (25)
that this is always permitted. The conclusion is that (33) has a solution, and moreover it is unique.
We summarize the solution to this simpler problem in the following lemma.

Lemma 1. Assume that R> 1, πM ∈ (0,1) and a jump in log-price with size N(m′, v′) occurs at
time T1 ∼ exp(λ). The solution to the finite-horizon optimal control problem with associated value
function (28) is

c̄t = H̄−1/Rwt, θ̄t = q̄wt

where the pair q̄ = q̄(B,m′, v′) and H̄ = H̄(B,m′, v′) is the solution to (33). The value function is
then expressed as Ṽ (w) = H̄U(w).

Proof According to our previous argument, there is a unique solution (q̄, H̄) to (33), and thus a
unique solution to the problem (28). Of course, it remains to prove that the unique solution to the
HJB equation actually gives the optimal policy and the value function for this simpler problem;
we leave this routine but technical verification to the Appendix A.3. �

Back to Problem 3.
Let us consider what happens up until the time T1 of the first jump when we are given n+ 1

signals. As we argued for (22), conditional on the past, the expected value to the investor at time
T1+ will be

U(wT1−)

∫
(1 + q(ex− 1))1−R P(dx|η)

∫
hn(y)P0(dy),

where q is the fraction of wealth held in the risky asset at T1−. Given the signal η about the jump
ξ in log-price at time T1, the distribution of ξ will be

ξ ∼N
(
v0η+ vεm0

v0 + vε
,

v0vε
v0 + v+ ε

)
≡N(m′(η), v′).



P.A. Ernst and L.C.G. Rogers: The value of insight
10 Article submitted to Mathematics of Operations Research; manuscript no. TBD

So if we define

A
(n)
3 ≡

∫
hn(y)P0(dy),

then the problem with n+ 1 signals is exactly the simpler problem when we have time-T1 bequest

A
(n)
3 U(w), and jump distribution N(m′(η), v′). Accordingly, the hn are generated recursively by

the relations

hn+1(η)1−1/R

1− 1/R
= sup

0≤q≤1

[
hn+1(η)ψ1(q) +λA

(n)
3 ψ2(q;m

′(η), v′)

]
, (34)

A
(n)
3 =

∫
hn(y)P0(dy); (35)

see (33). Since the value improves as we get more signals, it follows that hn(η)≥ hn+1(η). Therefore
the A

(n)
3 are also decreasing.

We summarize this as the following result.

Theorem 3. Assume that R > 1 and πM ∈ (0,1). The optimal control for Problem 3 has the

form

c̄t = (h(ηt))
−1/Rwt, θ̄t = q̄(ηt)wt

where ηt is the signal known at time t about the next jump after time t, q̄(η) is the value of q which

maximizes the function

q 7→ h(η)ψ1(q) +λA3ψ2(q;m
′(η), v′)

and (h,A3) are the maximal solution to the equation system

h(η)1−1/R

1− 1/R
= sup

0≤q≤1

[
h(η)ψ1(q) +λA3ψ2(q;m

′(η), v′)

]
, (36)

A3 =

∫
h(y)P0(dy) (37)

subject to the condition that A3 ≤A1. The value function is

V (w;η) = h(η)U(w).

Proof The equation system (36)-(37) has the trivial solution h(η)≡ 0, A3 = 0, so we do not have

a unique solution. However, the solution we obtain by value improvement, the value of the problem,

is maximal as claimed, by the following argument.

Suppose that (h̃, Ã3) solves (36)-(37), and that Ã3 ≤ A1 ≡ A(0)
3 . From (34) we discover that

h̃(η)≤ h1(η), which implies that Ã3 ≤A(1)
3 , from (34) and (36). Repeating the argument, we learn

that h̃(η)≤ h2(η) and Ã3 ≤A(2)
3 . In the limit, we have that h̃(η)≤ h(η) and Ã3 ≤A3.

All that remains is to give the verification for Lemma 1, which is done in Appendix A.3. �

Remark 1. One may consider the story where the agent knows the time and has a signal on

the jump (i.e., a combination of Problems 2 and 3). However, this story would be very much like

our Problem 2; at the instant of the jump one chooses the best portfolio for the jump, at other

times the continuous investment/consumption story is employed.
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3. Numerical results. In this Section, we compare the effects of different types of insider
information. There are so many parameters at our disposal that we have to try to make restrictions
which give us comparisons that can be interpreted; so throughout this Section we shall fix

r= 0.05, ρ= 0.15, R= 2. (38)

We shall also suppose that whatever the dynamics considered, there is a common annualized growth
rate µ̄ and a common annualized volatility σ̄. Thus if we were considering the basic Black-Scholes
model with no jumps, the stock would evolve as

dSt = St ( σ̄dWt + µ̄dt ).

For this baseline situation, the value is known explicitly [20](equation (1.30)):

VM(w) =AM U(w),

where
A
−1/R
M = γM ≡

{
ρ+ (R− 1)( r+ (µ̄− r)2/2σ̄2R )

}
/R.

If we force the investor only to invest in the bank account by letting σ̄→∞, then the limiting
value of AM , which we denote by Ar, turns out to be Ar = 100 if we use the values given in (38),
as the reader may quickly verify.

What happens when we include the jumps? We will suppose that a fraction β ∈ [0,1] of the
annualized return and volatility comes from the jumps, which arrive at intensity λ. The parameters
of the model (1) are therefore

µ= (1−β)µ̄, σ= σ̄
√

1−β, m= βµ̄/λ, v= βσ̄2/λ.

By definition, for the problems considered in this work, the value at time 0 with initial wealth w
is given by AkU(w) for k= 1,2,3. For the two types of insider traders, this value is the maximum
expected value of

∫∞
0
e−ρtU(ct)dt before the insiders receive information about the first jump. Since

AU(w) =U(A1/(1−R)w), we report the normalized values

ωk ≡
(
Ak
AM

)1/(1−R)

instead of Ak for k= 1,2,3. ωk is the value of a dollar in the k-th problem. For R= 2, ωk =AM/Ak.
For Problem 3, we always use vε = 0.5v. AM ,A1 are obtained by direct calculations and A2,A3 are
computed by value improvement.

The numerical results are presented in Table 1. In each block, the annualized return and volatility
are fixed. AM and A1 represent two situations with no insider information but different stochastic
structures. Hence ω1 tends to be close to 1 but it may or may not be greater than 1. ω2 and ω3 are
always greater than ω1 since they represent two insider situations with the same stochastic structure
as Problem 1, i.e., insiders can convert one dollar to more “utility” than ordinary investors. With
all the other parameters fixed, ω2 (or ω3) is greater for β = 0.5 than for β = 0.1. An interesting
observation is that ω3 seems significantly greater than ω2. One plausible reason is that the jump,
on the average, tends to be neutral (recall m= βµ̄/λ). Therefore, the insider information for the
time of the jump does not generate a large profit. On the contrary, knowing the magnitude of each
jump, albeit with noise, is far more valuable. There may indeed be some large jumps from which
insiders can make a big profit. Moreover, we notice that ω3 grows quickly with λ while ω2 does not.
Intuitively, it is difficult to predict whether a larger λ benefits the insiders, because though the
insider information comes more frequently, both m and v become closer to 0. A plausible reason
for this observation is that, for the second type of insiders, as λ grows larger, their ignorance of
the arrival time of the jump hurts them much less. For the first type of insiders, as m decreases,
their insider information does not constitute much of an advantage over ordinary investors.



P.A. Ernst and L.C.G. Rogers: The value of insight
12 Article submitted to Mathematics of Operations Research; manuscript no. TBD

µ̄ σ̄2 AM β λ ω1 ω2 ω3

0.1 1 1.005 1.034 1.123
0.1 2 1.005 1.034 1.211

0.07 0.05 98.030 0.1 4 1.005 1.034 1.351
0.5 1 1.033 1.236 1.448
0.5 2 1.033 1.237 1.712
0.5 4 1.033 1.238 2.124
0.1 1 1.005 1.033 1.107
0.1 2 1.005 1.033 1.168

0.07 0.02 95.181 0.1 4 1.005 1.033 1.258
0.5 1 1.026 1.316 1.309
0.5 2 1.027 1.319 1.466
0.5 4 1.027 1.320 1.702
0.1 1 1.012 1.037 1.138
0.1 2 1.012 1.037 1.229

0.1 0.05 88.581 0.1 4 1.012 1.037 1.368
0.5 1 1.064 1.242 1.467
0.5 2 1.066 1.246 1.722
0.5 4 1.067 1.247 2.116
0.1 1 0.998 0.999 1.036
0.1 2 0.998 1.000 1.077

0.1 0.02 74.799 0.1 4 0.998 1.000 1.145
0.5 1 1.024 1.114 1.187
0.5 2 1.028 1.118 1.313
0.5 4 1.030 1.120 1.505

Table 1. The numerical values for ω1, ω2, ω3 in different settings.

APPENDIX

A.1. Problem 1 Verifications The verification proofs for Problem 1 can be found in [7].
Nonetheless, we provide them here in our notation for use in the verifications of Problems 2 and
3. By letting θt = qtwt, we rewrite (2) as

dwt = [(r+ qt(µ− r))wt− ct]dt+σqtwt dWt + qtwt−

∫
(ex− 1)n(dt, dx).

Recall that c̄t = f(T1− t)−1/Rwt for 0≤ t < T1. When qt = q̄1 and ct = c̄t, the solution is given by

w̄t =w0 exp[ q̄1σWt + (r+ q̄1(µ− r)− 1
2 q̄

2
1σ

2−A−1/R1 ) t ]

Jt∏
i=1

[1 + q̄1(e
Xi − 1)].

where Jt denotes the the number of jumps up to time t and the Xi are the jumps in the log-price.
Guided by [4], we study the state-price density process ζ, which is the marginal utility of optimal
consumption:

ζt = e−ρtU ′(c̄t) =A1e
−ρtw̄−Rt .

We shall confirm the following properties:
(P1.1) for any admissible control (ct, qt), the stochastic process

Zt = ζtwt +

∫ t

0

ζscs ds

is a nonnegative supermartingale;
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(P1.2) E[
∫∞
0
ζtc̄t dt ] = ζ0w0.

Given these, we have

E
[∫ ∞

0

ζtc̄t dt

]
= ζ0w0 =Z0 ≥E[Z∞]≥E

[∫ ∞
0

ζtct dt

]
. (A.1)

By the concavity of U ,

E
[∫ ∞

0

e−ρtU(ct) dt

]
≤ E

[∫ ∞
0

e−ρt{U(c̄t) + (ct− c̄t)U ′(c̄t)} dt
]

= E
[∫ ∞

0

e−ρtU(c̄t) dt

]
+E

[∫ ∞
0

ζt(ct− c̄t) dt
]
.

From (A.1) we conclude that

E
[∫ ∞

0

e−ρtU(ct) dt

]
≤E

[∫ ∞
0

e−ρtU(c̄t) dt

]
,

proving the optimality of (c̄, q̄).
Now we must verify (P1.1) and (P1.2). By routine calculations, the dynamics of ζt are given by

dζt/ζt− =− ρdt+R{−r− q̄1(µ− r) +A
−1/R
1 + 1

2 (R+ 1)σ2q̄21 }dt−

−Rq̄1σ dWt +

∫
{(1 + q̄1(e

x− 1))−R− 1}n(dt, dx).

By Itô’s lemma,

dZt =wt−dζt + ζt−dwt + dζtdwt + ζtctdt
.
= ζtwt

[
(1−R)r− ρ+RA

−1/R
1 + (qt−Rq̄1)(µ− r) + 1

2 R(1 +R)σ2q̄1
2

−σ2Rqtq̄1 +λ

∫ (
{1 + q̄1(e

x− 1)}−R{1 + qt(e
x− 1)}− 1

)
p(x)dx

]
dt

= ζtwt
[
RA

−1/R
1 + (1−R){r+ q̄1(µ− r)− 1

2 σ
2Rq̄21}− ρ+λ(g(q̄1)− 1)

+ (qt− q̄1)
{
µ− r−σ2Rq̄1 +λ

∫
(1 + q̄1(e

x− 1))−R(ex− 1) p(x)dx
}]
dt

= ζtwt(qt− q̄1)
[
µ− r−σ2Rq̄1 +λ

∫
(1 + q̄1(e

x− 1))−R(ex− 1) p(x)dx
]
dt.

The second last equality can be derived using qt = q̄1 + (qt − q̄1) and the last equality follows
from (9). Using the function g1 defined in (8), the drift term can be further simplified to

dZt
.
= ζtwt(qt− q̄1)g′1(q̄1)dt.

Recall that q̄1 is the maximizer of g1, so if q̄1 ∈ (0,1) the derivative g′1(q̄1) = 0. If q̄1 is an endpoint,
it is not difficult to see that (qt− q̄1)g′1(q̄1)≤ 0. Hence the drift must be nonpositive, which implies
that Zt is a supermartingale.

Lastly, we verify E[
∫∞
0
ζtc̄tdt] = ζ0w0. Direct calculation gives us

E[ζtw̄t] =A1w
1−R
0 exp

[
1−R
R
{r+ (µ− r)q̄1−

1

1−R
ρ− 1

2
Rσ2q̄21 +

λ

1−R
(g(q̄1)− 1)}t

]
=ζ0w0 exp(−A−1/R1 t).

Then, using c̄t =A
−1/R
1 w̄t, we obtain

E
[∫ ∞

0

ζtc̄tdt

]
=

∫ ∞
0

E[ζtc̄t]dt= ζ0w0

∫ ∞
0

A
−1/R
1 exp(−A−1/R1 t)dt= ζ0w0.
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A.2. Problem 2 Verifications Recall that in Problem 2, the jumps come at times T1, T2, ...
which are the times of a Poisson process of rate λ (T0 = 0 by convention). The wealth evolves as:

dwt =wt−

[
rdt+ qt(σdWt + (µ− r)dt) + at

∫
(ex− 1)n(dt, dx)

]
− ctdt, (A.2)

where (q, c) is the control, and (at) is the choice of portfolio at the time of the jump. We conjecture
that q̄t = πM for all t,

c̄t = w̄tf(Tj − t)−1/R for Tj−1 ≤ t < Tj, (A.3)

at = a∗ ≡ argmax
g(a)

(1−R)
, (A.4)

where

g(a)≡
∫
{1 + a(ex− 1)}1−R p(x)dx (A.5)

and E [n(dt, dx)] = λdtp(x)dx. We conjecture that the value function at time t will be

V (t,wt;Tj) = f(Tj − t)U(wt) (Tj−1 ≤ t < Tj),

where f solves

0 =Rf1−1/R− γMRf − ḟ (A.6)

with the boundary condition

f(0) = g(a∗)

∫ ∞
0

λe−λsf(s)ds.

This leads us to believe that the marginal utility Vw(t, w̄t) ≡ ζt will be the required state-price
density,

ζt =
∑
j≥1

I{Tj−1≤t<Tj}f(Tj − t)(w̄t)−Re−ρt. (A.7)

From the definition, it is immediate that:

e−ρtU ′(c̄t) = ζt.

We may now proceed with the verification proof, which requires two propositions.

Proposition A.1. With ζ defined as (A.7), for any feasible control we have:

ζtwt +

∫ t

0

ζscsds

is a non-negative supermartingale.
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Proof The processes ζ and w̄ will be continuous except at the jump times Tj. Without loss of
generality, we look at (0, T1), where we have:

dw̄t
w̄t

= rdt+πM(σdW + (µ− r)dt)− f(T1− t)−1/Rdt.

Hence the evolution of ζt ≡ e−ρtf(T1− t)w̄−Rt is given by

dζt
ζt

=
[
−ρ− ḟ(T1− t)

f(T1− t)
−R(r+πM(µ− r)− f(T1− t)−1/R) +

+ 1
2 R(R+ 1)σ2π2

M

]
dt+πMσ dWt

= −r dt−RσπM dWt (A.8)

where we pass to the final line by using (A.6) and the explicit expression (17) for γM . In terms of
the Sharpe ratio κ≡ (µ− r)/σ, this is more cleanly expressed as

dζt/ζt =−r dt−κdWt

between jump times. At time Tj, the log price jumps by Xj, and so

w̄(Tj) = w̄(Tj−)
{

1 + a∗(eXj − 1)
}

ζ(Tj) = ζ(Tj−)
{

1 + a∗(eXj − 1)
}−R

f(Tj+1−Tj)/f(0).
(A.9)

If we were following some other feasible rule that chose a fraction a ∈ [0,1] of wealth to invest in
the stock at time Tj, then

E
[
(ζw)Tj

| FTj−
]

= (ζw)Tj−

∫
(1 + a∗(ex− 1))−R(1 + a(ex− 1))p(x)dx

∫ ∞
0

λe−λtf(t)dt/f(0)

=
(ζw)Tj−

g(a∗)

∫
(1 + a∗(ex− 1))−R(1 + a(ex− 1))p(x)dx.

Therefore

E
[
(ζw)Tj − (ζw)Tj− | FTj−

]
(ζw)Tj−

=
a− a∗

g(a∗)

∫
(1 + a∗(ex− 1))−R(ex− 1)p(x)dx

=
(a− a∗)g′(a∗)
g(a∗)(1−R)

≤ 0,

since a∗ maximizes g(a)/(1−R) on [0,1] from formulas (A.4) and (A.5). Hence the process

ζtwt +

∫ t

0

ζscsds

is a local supermartingale for any feasible (c,w). Away from the jump times, this can be verified
by the usual Itô verification as we did in Appendix A.1; at the jump times we have the expected
change is less than or equal to 0, by what we have proven above. �

Proposition A.2. With the optimal consumption process c̄t and the optimal wealth process w̄
defined at (A.2), (A.3), (A.4), and ζ as at (A.7),

M∗
t ≡ ζtw̄t +

∫ t

0

ζsc̄s ds,

is a non-negative martingale, with ζ0w0 =E
[∫∞

0
ζsc̄sds

]
.
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Proof Notice that the f used in Proposition A.1 is bounded away from zero; for some A> 0,

A−1 ≤ f(t)≤A for all t.

We have (see (A.9)) that

(ζw̄)Tj
(ζw̄)Tj−

=
{

1 + a∗(eXj − 1)
}1−R f(Tj+1−Tj)

f(0)

and between jumps

d(ζtw̄t) =−ζtc̄tdt+ ζtw̄t bdWt, Tj < t< Tj+1,

where b= κ(1−R)/R. Now if Zt solves

dZt = bZt dWt, Z0 = 1,

we find that

d

(
ζtw̄t
Zt

)
=
ζtw̄t
Zt

(
− c̄t
w̄t

)
dt,

from which we conclude that

ζtw̄t
Zt

= ζ0w
∗
0 exp

(
−
∫ t

0

c̄s
w̄s
ds

) ∏
Tj≤t

{
1 + a∗(eXj − 1)

}1−R f(Tj+1−Tj)
f(0)

. (A.10)

The aim is to prove that for any t,

sup
0≤s≤t

ζsw̄s ∈L1,

which will guarantee that the process M∗
t ≡ ζtw̄t +

∫ t
0
ζsc̄sds is not just a local martingale but also

a martingale. This is straightforward: c̄s/w̄s is f(Tj − s)−1/R and so it is bounded both above and
below. The process Z is an exponential Brownian motion and thus sup0≤s≤tZs ∈ L1. This just
leaves the product term in (A.10), which is bounded above by

π̃t ≡
∏
Tj≤t

max{1,
(
1 + a∗(eXj − 1)

)1−R}K,
where K = sup{f(t)/f(0)} ∈ (1,∞). Every time a jump occurs, the product π̃t gets an additional
independent factor with finite expectation

∆≡E
[
max

{
1,
(
1 + a∗(eXj − 1)

)1−R}
K
]
,

so

E
[

sup
0≤s≤t

π̃s

]
=E [π̃t] =

∑
n>0

e−λt
(λt)n

n!
∆n = exp(λt(∆− 1)) ,

which is finite.
The final assertion to prove is that E [ζtw̄t]→ 0 as t→∞. We have E [Zt] = 1 for all t, and Zt is

independent of
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Yt ≡ exp

[
−
∫ t

0

c̄s
w̄s
ds

] ∏
Tj≤t

{
1 + a∗(eXj − 1)

}1−R f(Tj+1−Tj)
f(0)

.

We observe that

∫ Tj

Tj−1

c̄s
w̄s
ds=

∫ Tj

Tj−1

f(Tj − s)−1/Rds (from (A.3))

=

∫ Tj

Tj−1

{
γM +

ḟ(Tj − s)
Rf(Tj − s)

}
ds (from (A.6))

= γM(Tj −Tj−1) +
1

R
log

f(Tj −Tj−1)
f(0)

.

Thus,

E [Y (Tj)] = E

[
exp(−γmTj)

j∏
i=1

(
1 + a∗(eXi − 1)

)1−R j∏
i=1

(
f(Ti−Ti−1)

f(0)

)1−1/R
f(Tj+1−Tj)

f(0)

]

= g(a∗)j
1

g(a∗)

(∫ ∞
0

λe−λt−γM t

(
f(t)

f(0)

)1−1/R

dt

)j
.

Notice that

g(a∗) = f(0)/

∫ ∞
0

λe−λsf(s) ds,

so, by (18),

β ≡ g(a∗)

∫ ∞
0

λ exp{−λt− γM t} (f(t)/f(0))
1−1/R

dt

=

∫∞
0
λ exp{−λt− γM t}f(t) (f(0)/f(t))

1/R
dt∫∞

0
λe−λtf(t) dt

=

∫∞
0
λe−λtf(t)

{
1 + 1−exp{−γM t}

γM exp{−γM t}f(0)1/R

}−1
dt∫∞

0
λ exp{−λt}f(t) dt

< 1.

Thus E [Y (Tj)]→ 0.
Now observe that Yt is decreasing on each interval [Tj, Tj+1], so supt≥Tj Yt = supk≥j Y (Tk) and

therefore:

E

[
sup
t≥Tj

Yt

]
≤ E

[
sup
k≥j

Y (Tk)

]
≤
∑
k≥j

E [Y (Tk)]

≤ Cβj,

for a constant C.
We have

E [Yt] = E [Yt : t < Tj] +E [Yt : t≥ Tj]

≤ E [Yt : t < Tj] +E

[
sup
u≥Tj

Yu

]
,
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so given ε > 0 we can choose j sufficiently large such that E
[
supu≥Tj Yu

]
≤ ε/2. As for the first

term, we see that

Yt = exp

[
−
∫ t

0

c̄s
w̄s
ds

] ∏
Tj≤t

(
1 + a∗(eXj − 1)

)1−R f(Tj+1−Tj)
f(0)

≤
∏
Tj≤t

(
1 + a∗(eXj − 1)

)1−R f(Tj+1−Tj)
f(0)

.

Thus, all the way until Tj, the process Y is bounded by
∏j

i=1 (1 + a∗(eXi − 1))
1−R

K (since f is
bounded). Since the jump sizes Xj are independent of the jump times, we have

E [Yt : t < Tj]≤K
{
E
[
1 + a∗(eXi − 1)

]1−R}j P (t < Tj) .

We now may choose t sufficiently large such that the right-hand side of the above display is less
than ε/2. Hence E [Yt] =E [ζtw̄t]→ 0, and ζ0w0 =E

[∫∞
0
ζtc̄sds

]
as required. �

A.3. Problem 3 Verifications

Verification for the simpler problem Recall that we assume R> 1, πM ∈ (0,1). The agent
chooses previsible portfolio proportions (qt) and non-negative optional consumption process (ct),
resulting in wealth evolution

dwt =wt−
[
rdt+ qt

{
σdWt + (µ− r)dt+ (eξ − 1)dJt

}]
− ctdt, (A.11)

where Jt = I{t≥T1} and T1 ∼ exp(λ), independent of everything else, is the time at which the log-
price undergoes a jump ξ ∼N(m′, v′), The initial wealth is denoted by w0 =w, and the set A(w) of
admissible pairs (c, q) is the set of pairs for which wt ≥ 0 and qt ∈ [0,1]. The objective is to obtain
the value

Ṽ (w)≡ sup
(c,q)∈A(w)

E
[∫ T1

0

e−ρsU(cs) ds+ e−ρT1BU(wT1)

]
,

where B > 0 is constant. The HJB equation to be solved is

H1−1/R

1− 1/R
= sup

0≤q≤1

[
Hψ1(q) +λBψ2(q;m

′, v′)

]
, (A.12)

where

ψ1(q) = r+ q(µ− r)− 1
2 σ

2q2R− ρ+λ

1−R
,

ψ2(q;m
′, v′) =

∫
U(1 + q(ex− 1)) P(dx|m′, v′),

and there is a unique solution (q̄, H̄) to (A.12). We conjecture that the marginal utility

ζt = e−ρt c̄−Rt I{t<T1}+ e−ρT1Bw̄−RT1 I{t≥T1}
= e−ρt H̄ w̄−Rt I{t<T1}+ e−ρT1Bw̄−RT1 I{t≥T1}

will serve as a state-price density, where the optimal consumption process c̄t = H̄−1/Rw̄t. The
conjectured optimal wealth process evolves as

dw̄t = w̄t−
[

(r+ q̄(µ− r)− H̄−1/R)dt−σq̄ dWt + q̄(eξ − 1)dJt
]
. (A.13)
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Routine calculations give us

dζt
ζt−

= −ρdt−R(r+ q̄(µ− r)− H̄−1/R)dt+ 1
2 R(1 +R)σ2q̄2dt−

−Rσq̄ dW +
{
H̄−1B(1 + q̄(eξ − 1))−R− 1

}
dJt.

As before, we aim to show that for any admissible (c, q)

Zt = ζtwt +
∫ t
0
ζscs ds is a supermartingale

and is a martingale under control (c̄, q̄). Itô’s formula and routine simplifications give

dZt = ζt−dwt +wt−dζt + dwtdζt + ζtctdt
.
= ζtwt

[
(qt− q̄)

{
(λB/H̄)

∫
(1 + q̄(ex− 1))−R(ex− 1) P(dx|m′, v′) +

+µ− r−σ2Rq̄
}

+(1−R)(r+ q̄(µ− r)− 1
2 Rσ

2q̄2)− (ρ+λ) +

+RH̄−1/R + (λB/H̄)

∫
(1 + q̄(ex− 1))1−R P(dx|m′, v′)

]
dt

= ζtwt(qt− q̄)
[

(λB/H̄)

∫
(1 + q̄(ex− 1))−R(ex− 1) P(dx|m′, v′) +

+µ− r−σ2Rq̄
]
dt (A.14)

= ζtwt dt (qt− q̄){ H̄ψ′1(q̄) +λBψ′2(q̄;m
′, v′) }/H̄ (A.15)

where many terms disappear in the step to (A.14) because of the HJB equation (A.12). The final
form of the drift in (A.15) is non-positive because q̄ is the maximiser for (A.12). If we use qt = q̄,
the drift is clearly zero, so Z is then a local martingale. To finish, we need to show that for any
t > 0

sup
0≤s≤t

Zs ∈L1.

The argument is similar to that used for Problem 2, but easier, so we leave the details to the reader.
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[9] Itô, K. (1978). Extension of stochastic integral. In Proceedings of the International Syposium on Stochastic
Differential Equations, pages 95–109.

[10] Janecek, K. (2004). What is a realistic aversion to risk for real-world individual investors. International
Journal of Finance, 23:444–489.

[11] Jeulin, T. and Yor, M. (1978). Grossissement d’une filtration et semi-martingales: formules explicites.
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