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Abstract

The theory of financial markets is well developed, but before any
of it can be applied there are statistical questions to be answered: Are
the hypotheses of proposed models reasonably consistent with what
data shows? If so, how should we infer parameter values from data?
How do we quantify the error in our conclusions? This paper examines
these questions in the context of the two main areas of quantitative
finance, portfolio selection and derivative pricing. By looking at these
two contexts, we get a very clear understanding of the viability of the
two main statistical paradigms, classical (frequentist) statistics, and
Bayesian statistics.

Introduction.

If Sit denotes the price of asset i (i = 1, . . . , d) at the end of day t, then a
very common modelling assumption is that

Xt ∼ N(µ, V ), (1)

where
Xt ≡ (X1

t , . . . , X
d
t ) ≡ (log(S1

t /S
1
t−1), . . . , log(Sdt /S

d
t−1))

is the vector of day-t returns. Here, the mean µ and the covariance V are
unknown, but it is assumed that they are constant over time, and that re-
turns on different days are independent. If we ask the very natural question,
‘How should we invest in this market?’, then there is no shortage of answers
to this question; commonly, we suppose that we know some objective that
we wish to optimize, that we know the parameter θ ≡ (µ, V ) of the return
distribution, and then we do some analysis to derive an investment strategy
that optimizes our objective, and which will depend on the parameter θ. As-
suming that we know the objective to be optimized is innocent, because we
are free to choose it, but assuming that θ is known is not, and this is where
statistics comes in. So in Section 1 we start with returns distributed as (1),
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and see in more detail how this would lead to an investment strategy - which
of course must depend on θ - and how we would make use of statistics to
represent our knowledge about θ. Even in this simplest setting, the inconsis-
tencies and impossibilities of classical statistics are immediately visible. In
contrast, Bayesian statistics buys us a path free from all of these problems
for the price of making subjective inputs. In the struggle for the soul of
statistics, the Bayesian approach is usually attacked because the statistician
has to make a subjective choice of prior for the parameter θ. In truth, the
weakness of subjectivity happens before that, when we choose the family of
models to use - making an assumption about a prior distribution over that
family is a much smaller leap of faith. But if we recognize that, then this
subjectivity affects classical statistics in exactly the same way - subjectivity
is not a weakness only of Bayesian statistics!

So Section 1 gives us some kind of framework for answering the question,
‘How should we invest in this market?’ In Section 2 we look at the question
we should have asked first, namely, ‘Are the modelling assumptions reason-
able?’ - in other words, can we suppose that returns are IID multivariate
Gaussian? Not surprisingly, the answer is, ‘No.’ However, as we shall see,
this is not as bad as it seems, because simple transformations change the
data into something that is reasonably like IID Gaussian, and the theory
developed in Section 1 may actually be fairly relevant. We then take a look
in Section 3 at investing in the S&P500, and see what some of these ideas
give us.

The next section of the paper looks at derivative pricing, and once again
the inconsistencies of classical statistics surface in a big way almost imme-
diately. Once again, Bayesian statistics offers an escape.

1 Portfolio selection.

Recall that we are assuming (1) that returns are IID multivariate Gaussian.
We let Ft denote the σ-field of information at the end of day t. The portfolio
investment decision requires us to choose portfolio ht at end of day t− 1 to
hold for day t; then

wt = (1 + r)(wt−1 − ht · 1) + ht · (St/St−1). (2)

Here, 1 is the vector with all entries equal to 1, and hit denotes the dollar
amount invested in the ith asset for day t, an Ft−1-measurable random
variable. Solving a problem with a multi-period objective involves dynamic
programming of some form, which is rarely amenable to closed-form solution,
so we just focus for now on a single-period objective, which already illustrates
the issues: we aim to find

sup
ht

E[ U(wt) | Ft−1 ], (3)
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where U is C2 strictly concave and increasing. In order to calculate this
objective, we need to know the conditional law of Xt given Ft−1, which is
of course N(µ, V ) - but what are µ, V ?

What does classical statistics say?

The classical statistical paradigm is that the value of θ ≡ (µ, V ) is fixed but
not known - so within that paradigm, we are unable to compute the objective
(3), because we don’t know θ - and if we cannot compute the objective, we
certainly cannot optimize it! The classical statistician would respond that
observation of the data informs us about the possible values of θ, which
would allow us to exclude values of θ which are poorly supported by the data.
So after observing returns for some time, we would have some confidence
set C for the values of θ, and we might then propose some minimax version
of the original objective:

sup
ht

inf
θ∈C

Eθ[ U(wt) ]. (4)

Now this might work for the simplest examples from Statistics 101, such as
univariate Gaussian data with known variance, where we would be perverse
to take the confidence set C to be anything other than some interval symmet-
ric about the sample mean; but for multivariate Gaussian data there is no
obvious choice for C. We might try to exclude values of θ that are ‘extreme’
in some sense, but the definition of ‘extreme’ requires us to choose some
statistic, and it is hard to see what we could pick here; how would we say
that a covariance matrix V was too extreme given observations X1, . . . , XN?
Even if we could answer that, trying to calculate (4) is in general computa-
tionally infeasible, given that the set C (even if we could say what it was)
is a subset of some high-dimensional Euclidean space. So in practice the
classical approach to statistics is used by calculating some estimator (µ̂, V̂ )
and pretending that these are the true values. This is not the case of course,
but since it is so hard to quantify the error being made by this assumption,
the preferred response in practice appears to be to ignore it.

So just by thinking briefly about classical statistics in the context of the
portfolio selection problem (3), we see that it just cannot work!

What does Bayesian statistics say?

Bayesian statistics also treats the parameter θ as unknown, but proposes
that it has a known distribution π0. Then after seeing X1, . . . , Xt the dis-
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tribution of θ has evolved to

πt(dθ) ∝ π0(dθ)

t∏
s=1

f(Xs; θ)

∝ π0(dθ)

(detV )t/2
exp
{
− 1

2
t(µ− X̄t) · τ(µ− X̄t)− 1

2
t tr
[
τ V̂t
]}
, (5)

where τ ≡ V −1 is the precision matrix, and

µ̂t = X̄t ≡ t−1
t∑

s=1

Xs, (6)

V̂t = t−1
t∑

s=1

(Xs − X̄t)(Xs − X̄t)
T . (7)

Now we can approach the optimization (3) of the objective because we really
do know the law of Xt given Ft−1 - the law of θ = (µ, V ) is given by (5),
and conditional on θ the law of Xt is N(µ, V ). So all of the difficulties of the
classical approach evaporate, provided we are willing to make the subjective
choice of the prior π0.

More has been said about the choice of the prior than we could ever
summarize, but my view is that this is a relatively innocent subjective choice.
In practice, one would run the analysis for a number of widely different priors
as a diagnostic; if the answers are broadly similar, then the choice of prior
was not particularly critical, and if the answers vary a lot then we learn that
there was not so much information in the data, again useful to know. A far
more important subjective choice, already mentioned, is the choice of the
family of models allowed.

As we shall see, taking a Bayesian view deals completely with all the
theoretical aspects of statistical inference, but the price we end up paying
is that the computational aspects become a lot more onerous.

2 Are S&P500 returns IID Gaussian?

We continue to illustrate the themes of this paper by simplifying the model
(1) we began with to one asset, the S&P500 index. The model assumption
is that the daily returns are IID Gaussian, but are they?

Are returns identically-distributed?

Figure 1 plots the daily returns of the S&P500 from 1 July 1954 to 4 May
2017, and just looking at this plot we would not believe that the returns are
IID; there are obvious periods of higher and lower volatility, which would
not happen if the returns were IID. Another plot which shows this quite
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clearly is to plot the cumulative sum of the squared returns (the realized
quadratic variation), which we see at Figure 2.
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Figure 1: Raw returns of the S&P500.
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Figure 2: Cumulative sum of squared returns of the S&P500.

If the returns were IID, we should expect to see a plot that goes up
roughly as a straight line, and this is obviously not the case. However, we
can transform the returns to something much closer to IID by the simple
trick of vol rescaling, which goes like this.

Make an initial estimate of the volatility of the returns series by choosing
some integer N and calculating

σ̂20 = N−1
N∑
t=1

X2
t . (8)

Then update recursively, starting at t = 0:

Y = max{ −Kσ̂t, min{ Kσ̂t, Xt } }
σ̂2t+1 = βWY

2 + (1− βW )σ̂2t

X̃t+1 = Xt+1/σ̂t+1

Here, K is some cut-off constant (K = 4 would do) whose purpose is to pre-
vent occasional very large returns from impacting the running vol estimate
σ̂t too much. The exponential weighting parameter βW ∈ (0, 1) smooths
the vol estimates; in the calculations of this paper, it was taken to be 0.025.
This corresponds to a mean lookback of 40 days, roughly 6 weeks - not too
long, not too short. Other values could be used of course. Once we do this,
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the plots of the rescaled returns and the cumulative sum of rescaled returns
are shown in Figures 3 and 4.
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Figure 3: Raw and rescaled returns of the S&P500.
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Figure 4: Cumulative sum of squared returns and squared rescaled returns
of the S&P500.

These plots show that the rescaled returns look quite time homogeneous.

Are returns Gaussian?

The classical diagnostic for a Gaussian distribution is to take the sample and
make a q–q plot of it. When we do this, we see Figures 5 and 6. The first is
quite close to a straight line in [−2, 2], which includes more than 90% of the
range of the standard Gaussian, but the second is quite close to a straight
line in [−3, 3] (which includes 99.9% of the standard Gaussian), so this looks
closer to Gaussian. We cannot expect a perfect straight line, because there
are going to be days when something big happens and the return on those
days will be out of line with the usual behaviour, but if we have a story that
is good for 999 out of 1000 days, this is saying that an unusual day happens
roughly once every four years, which seems plausible.
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Figure 5: q–q plot of the returns of the S&P500.
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Figure 6: q–q plot of the rescaled returns of the S&P500.
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Are returns independent?

If returns are independent, then when we plot the autocorrelation function
(ACF) of the time series of returns, we should see something that is essen-
tially zero for all positive lags. The same should be true when we plot the
ACF of absolute returns. The corresponding plots for the raw and rescaled
returns of the S&P500 are shown in Figures 7 and 8, and are entirely typical
of what these plots show. The ACF of raw returns and of rescaled returns
is essentially zero at all positive lags, but the ACF of absolute raw returns
remains positive for many lags, which is explained by the fact that the raw
returns exhibit volatility clusters, with big returns coming together. Inter-
estingly though, the ACF of the rescaled absolute returns is close to zero at
all positive lags. This is a necessary (but not sufficient) condition for the
returns to be independent.
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Figure 7: ACF of the raw and scaled returns of the S&P500.

10



0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0
ACF of absolute raw returns

0 5 10 15 20 25 30 35 40
0.2

0.0

0.2

0.4

0.6

0.8

1.0
ACF of absolute rescaled returns

Figure 8: ACF of the raw and rescaled absolute returns of the S&P500.

So to summarize, on the basis of these simple exploratory analyses we
may make the working hypothesis that the vol-rescaled returns are IID Gaus-
sians. For multivariate return data, we may need to be more circumspect,
but for this univariate return series we can suppose that the rescaled re-
turn series are IID Gaussian, with variance equal to 1. Our interest then
focuses on understanding the mean µ, which we expect to be quite small
relative to the variance (otherwise it would be a simple matter to generate
huge profits from investment). In practical terms, we can take the original
return data and rescale it, treating the rescaled return data as if it were the
actual returns; because our portfolio analysis will tell us each day how many
units of rescaled asset we should hold through tomorrow, and then we can
immediately work out how many units of the original asset we need to hold.
For portfolio selection problems then, broadly speaking

non-constant vol does not matter, non-constant mean returns do.

3 How well does Bayesian model averaging work?

If we invested a constant $1 in the S&P500 over the 63 years of data used
above, then the Sharpe ratio is 23.39%. If we invest a constant $1 in the vol-
rescaled returns, we get a slight improvement to a Sharpe ratio of 26.14%.
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These are rather primitive strategies however. In a Bayesian model av-
eraging, we take some finite family of J models, each of which makes an
assumption about the conditional distribution of Xt given Ft−1, and we let
Bayes’ Theorem update the posterior distribution over the models. In more
detail, if model j says that1

X̃t|Ft−1 ∼ N(µt(j), 1) (9)

then the updating of the posterior probabilities is

πt(k) ∝
∑
j

πt−1(j) pjk γ(X̃t − µt(k)), (10)

where γ is the standard Gaussian density. The trading strategy comes from
a simple myopic rule, where we choose ht to maximize (3), where U(x) =
− exp(−x). To keep the story realistic, we assume there are proportional
transaction costs ε|ht − ht−1| when we switch positions, so there will be
situations where the cost of switching exceeds the gain in utility, and we
therefore choose not to switch portfolio.
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Figure 9: P&L from simple Bayesian model averaging.

1We suppose that the variance is 1, since we have done volatility rescaling.
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Figure 10: Positions in simple Bayesian model averaging.

In Figure 9 we see the P&L generated when we take just two models,
the first of which thinks that µt(1) = 0.15 for all t, the second of which
thinks that µt(2) = −0.15 for all t - in other words, the index is either
growing at 15% per annum, or shrinking at 15% per annum. Taking the
transactions costs to be 3 bp, we find that the Sharpe ratio of the strategy
is 41.00%, substantially higher than the two constant-dollar strategies. The
P&L shown in Figure 9 displays relatively little drawdown. The positions
shown in Figure 10 fluctuate between −0.15 and 0.15, the extremes we
would expect if the posterior probabilities were at their extreme values. It
is interesting to see that periods when the position is strongly negative, such
as 1973-1974, 2001-2003, 2008-2010, correspond to periods when the global
economy was under significant stress.

This looks like (and is) an impressive demonstration of the power of
Bayesian modelling techniques. But it is worth underlining that some cherry-
picking has been going on here; if we include a third model into the com-
parison which says X̃t|Ft−1 ∼ N(0, 1), then the same analysis leads to a
Sharpe ratio of 30.18%. Changing the various parameters of the model can
make a big difference to the conclusion, and we need to be aware of this;
searching around for a ‘sweet spot’ is a form of data-snooping. We would
be outraged if someone proposed a trading strategy that needed to know all
future returns, but if we search for ‘good’ parameter values in some para-
metric model, we are in effect making use of information about the entire
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future evolution of returns, even if the individual model selected at the end
does not. I have seen this done in practice; a model gets adopted, and then
fails to deliver the returns that historical analysis gave. It is good practice
to leave several years of data locked up until the model has been chosen, and
then see what happens once that data is unlocked - out-of-sample testing.
Even so, the future may not co-operate.

4 Derivative pricing.

When it comes to derivative pricing, we work in the pricing measure in
which the growth rate of the asset is replaced by the riskless rate. The great
industry of the implied volatility surface shows that the non-constancy of
the volatility is a very important matter in derivative pricing, so in contrast
to the situation with portfolio selection,

non-constant mean returns do not matter, non-constant vol does.

Some derivatives are very liquid, so their prices are taken to be the market
prices - any model should match those prices very closely, if not perfectly.
More exotic derivatives on the other hand are made to order, and there is
no market price, so the price has to come from some (parametric) model,
as a function of observable state variables Xt and unobserved parameters
θ. The parameter θ of the model will not be known, so we have to carry
out some statistical procedure to identify it, and as with portfolio selection
there are the two main paradigms to consider.

What does classical statistics say?

The conventional model calibration procedure of the industry takes the
prices Y a

t , a = 1, . . . , A of some liquid derivatives, and compares those to the
model prices ϕa(Xt, θ). Then some ‘best-fitting’ choice θ∗t of the parameter
is found by solving

inf
θ

∑
a

|Y a
t − ϕa(Xt, θ)|2 . (11)

Then the price of some exotic is calculated by assuming that θ = θ∗t . There
are various issues with this approach, some more important than others.

1. The model prices ϕa(Xt, θ) may not exactly match market prices Y a
t .

2. Tomorrow we recalibrate and arrive at a value θ∗t+1 - so how do we
mark-to-market and hedge a derivative that we sold on day t? Using
θ = θ∗t ? Using θ∗t+1? Using some other θ value?

3. Would some other model be ‘better’?

4. θ∗t is an estimate - what account do we take of estimation error?
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The first point need not cause insuperable problems, because market prices
are not always taken simultaneously, and the market price is in any case a
bid-ask spread, so exactly fitting some ideal value is not essential. But the
second issue is very real - the derivative priced and sold on day t was calcu-
lated on the assumption that θ∗t was the true parameter value, unchanging
for all time, and yet on the very next day we abandon that assumption by
saying that θ = θ∗t+1 ! This is a fundamental inconsistency of the calibration
approach. The third point cannot be answered in this framework, because
no models outside the chosen parametric model are admitted. The fourth
point is again unanswerable in most situations, because of the difficulty of
specifying a confidence set, and searching over it for extremes; so the esti-
mation error is either ignored completely or treated in a very crude manner.

So overall the conventional calibration approach is inconsistent, and can-
not account for estimation error.

What does Bayesian statistics say?

In the Bayesian approach, we choose and fix a finite set of J models: un-
der model j, the underlying state process X is Markovian, with transition
density

pj(x, x
′) = Pj( Xh ∈ dx′ | X0 = x )/dx′ (j = 1, . . . , J), (12)

where h > 0 is the time step. As before, we give ourselves some prior
distribution πj(0) over the possible models. Model j has pricing function
ϕaj (·) for derivative a. We select some loss function Q(ϕj(X), Yt), which for
the sake of the discussion we might take to be

Q(y, y′) = α‖y − y′‖2 (13)

foe some α > 0. The log-likelihood `j(t) of model j at time t then updates
as

`j(t) = `j(t− h) + log pj(Xt−h, Xt)−Q(ϕj(Xt), Yt). (14)

In practice, it is a good idea to allow the data-generating model to change
with a small probability each period, according to some Markov chain with
transition matrix P . This prevents the Bayesian inference from getting stuck
at some long-term average values as the number of time-steps increases,
and reflects a natural requirement that data from the distant past should
have less influence on our inference than more recent data. The posterior
distribution then updates as

πj(t) ∝
∑
k

πk(t− h) pkj exp(`j(t)). (15)

Now everything is easy:
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• The law of Xt+h conditional on Ft has density
∑

j πj(t) pj(Xt, ·);

• If model j gives the price of an exotic to be ξj , then take the overall
price to be

ξ̄ ≡
∑
j

πj(t) ξj , (16)

the posterior mean;

• What is the error in ξ̄? It is the mean of a discrete distribution over
the values ξj with weights pj(t), so we know the variance and all other
moments;

• If model j gives delta-hedge2 Hj , then to first order we have a delta-
hedge given by

∑
j πj(t)Hj .

If we revisit the issues that were problematic for the classical approach, we
have answers:

1. The model prices ϕa(Xt, θ) may not exactly match market prices Y a
t .

The Bayesian approach does not say that the prices must be any par-
ticular value - it says that any price is a random variable whose dis-
tribution we know completely.

2. Tomorrow we recalibrate and arrive at a value θ∗t+1 - so how do we
mark-to-market and hedge a derivative that we sold on day t? Using
θ = θ∗t ? Using θ∗t+1? Using some other θ value? At all times, the price
from the Bayesian approach is the posterior mean of the price - there
is no inconsistency;

3. Would some other model be ‘better’? Other models can be compared
simply by adding them to the universe of models in the Bayesian com-
parison;

4. θ∗t is an estimate - what account do we take of estimation error? Noth-
ing is estimated in the Bayesian approach.

At this point, it might appear that the Bayesian approach to inference
deals triumphantly with all the conceptual difficulties and inconsistencies
of the classical approach; which it does. However, this is not to say that
all problems have been eliminated, and in fact there remain very consid-
erable difficulties in applying the Bayesian methodology effectively, to do
with computation. To apply the Bayesian approach in the way we have just
described requires us in the first place to make a choice of the finite family
of models considered, and this is the major issue. If we were only going

2That is, a hedge which to first order cancels out the effect of moves of the underlying.
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to consider a one-parameter family of models, we could select a finite set
of parameter values (perhaps just a few thousand) which effectively cover
the parameter space, and the computational analysis will run ahead with
no issues. But if we were looking at a family of models indexed by some
parameter θ ∈ R8 then it will be hard to distribute even one million points
in the parameter space in such a way as to cover reasonably effectively, and
at this point the computational Bayesian method starts to struggle. We are
talking here about particle filtering (also known as sequential Monte Carlo),
and although much effort has in the last thirty years been directed towards
doing this well, it remains far from a finished technology. All manner of
variants of the basic approach have been proposed - more than we could
possibly begin to summarize here - which just goes to show that obvious
general implementations must often fail.

Summary.

This survey has taken a look at how statistical methodology helps in the
analysis of financial asset returns, whether for portfolio selection or for
derivative pricing. The conclusion is that statistics helps up to a point,
but falls far short of what we would like to be able to do. The classi-
cal paradigm is an unworkable conceptual framework for studying data; its
shortcomings may be hidden when we look at experimental data from the
physical sciences, where the signal-to-noise ratio is much smaller than in
financial data, but once we try to use it in finance and economics, it simply
fails. Nevertheless, the methods of classical statistics provide very useful
exploratory tools; if we were given ten years of daily returns on 2000 assets,
we would almost certainly begin by calculating sample mean returns, and
the sample covariance matrix, then we might try to pull out some principal
components. Such calculations would very quickly tell us stylized facts of
the data, and direct our attention to questions of interest.

Hopefully this article has well made the point that if we want a statistical
methodology that is consistent, then it has to be Bayesian. Sadly, when it
comes to trying to use Bayesian statistics in practice, the computational
challenges quickly become overwhelming. Nevertheless, with patience and
computational resources, we can make progress. As always, choosing very
simple models pays off, and it is here that some judicious use of classical
methodology to discover stylized facts, and then using a more thorough
Bayesian analysis of a simple model expressing those facts can be successful.
Though the tools of statistics have changed little over time, there is no
uniform recipe for using them; in the end, applying experience and an open-
minded approach to a new data context are the best we can do.
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