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Abstract

We study equilibrium in a multi-agent economy with a single productive
asset. There is a financial market in which shares in the productive asset and in
a single financial asset may be traded by the agents in the story. Agents have
common von Neumann-Morgenstern preferences, but differ in their beliefs, as in
Brown & Rogers [2]. Here, the agents may be subject to leverage constraints,
and the financial asset is in non-negative net supply. Diverse beliefs give a reason
why agents may hold non-zero positions in the financial asset, which, after all,
does not deliver any consumption good. Without leverage constraints, agents
agree on the prices of all contingent claims, but once leverage constraints are
applied this consensus may be broken. Positive net supply of the financial asset
can have an impact on inflation.

1 Introduction

In the classical representative-agent Lucas economy, there is a unique stock price
derived from the unique state-price density; it is a great context to introduce key
ideas and methods in DSGEs (dynamic stochastic general equilibrium models), but
things get more interesting once we allow for agent diversity. Agent diversity is
frequently introduced through different preferences, but we maintain that a more
natural and interesting source of diversity comes from different beliefs, a claim which
we shall illustrate in this paper.

In our model, there will be a single productive asset (the firm), and a single
(infinitely divisible) financial asset. There will be a financial market in which shares
in the firm and in the financial asset (the bond) will be traded. The key features of
the model are

1. Agents have diverse beliefs;

2. There may be leverage constraints on positions held;

3. The financial asset is in non-negative net supply.

Our agents have standard von Neumann-Morgenstern preferences over consumption
streams. Agent diversity is already a rationale for the existence of the financial
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asset, even though its possession delivers no consumption good; for example, early
on, patient agents may sell some of their shares in the firm in return for more of the
bond, with the intention of using the bond to buy back shares later when impatient
agents have had the most of their consumption. This gives the bonds value, and in
equilibrium we can find the relative prices of shares and bonds. Our agents will differ
only in their beliefs, and in fact when we come to develop the results we will assume
that they all have a common log felicity. This assumption allows us to develop quite
explicit solutions while retaining many features of interest.

One thing we find is that in the absence of leverage constraints, all agents agree
on the prices of all assets; they have a common state-price density. This does not
mean that they take identical positions of course, because their beliefs differ; but
they have to agree on prices, because if agent 1 thinks the share was worth more
than agent 2 thinks it is worth, there is nothing to stop him borrowing some money
to buy more of the share from agent 2 at a price that agent 2 will accept, but which
agent 1 thinks is favourable to himself.

However, once we impose leverage constraints, this argument breaks down, be-
cause there now can be a reason that stops agent 1 from borrowing money to buy
some of agent 2’s shares - he may already be at his leverage limit. We will show that
this can in fact happen.

A particularly interesting situation arises when short-selling is not allowed, an
extreme form of leverage constraint. This can be interpreted as a cash-in-advance
requirement where assets must be purchased with ready cash. In discrete time, cash-
in-advance gives value to otherwise worthless money - more cash allows an agent a
greater set of opportunities, so he may be willing to exchange real assets for this
cash which allows him to exploit the greater opportunities arising from the relax-
ation of constraints on his choices. Cash-in-advance has a long history in economics.
One branch of the literature takes and inventory-theoretic approach. Baumol [1]
and Tobin [10] introduce models where agents trade-off exogenously imposed inter-
est earnings and banking costs to determine equilibrium cash holdings. Romer [7]
presents a discrete-time general-equilibrium version of this. Closer in line with our
model are settings where cash is modelled as a transactions medium in an equilibrium
economy without imposing arbitrary exogenous costs. Svensson [9] has a discrete-
time cash-in-advance story where agents must decide on cash holdings before their
consumption is known. Hence, they hold extra precautionary cash despite a positive
interest rate. We will develop our results in a simple continuous-time infinite-horizon
framework.

There has been some work in the literature on the effects of market imperfections
on market equilibrium. Ross [8] examines how short-sale constraints can lead to
violations of CAPM. Milne and Neave [5] investigate a similar problem in an intricate
discrete-time finite-horizon equilibrium model. They show how transaction costs and
trading constraints lead to market incompleteness. Similar results were obtained by
Jouini and Kallal [4] using no-arbitrage arguments.
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The solution we obtain is mathematically similar to Cvitanic & Karatzas’ solution
[3] for the Merton problem under portfolio constraints. They show that the support
function of the feasible portfolio set plays a critical role in affecting the state-price
density. When an agent hits his constraint, this support function simultaneously
distorts the change-of-measure and discount factor in his state-price density, leading
the agent to keep his portfolio within the feasible region when his unconstrained
optimum would otherwise be outside. However, in Cvitanic & Karatzas’ model, the
stock dynamics are fixed. Hence, it is not clear from the outset how the discounted
stock price can remain a martingale under different agent measures.

The structure of this article is as follows. In Section 2 we present the frame-
work of the DSGE model, including the diverse-beliefs characterization, the leverage
constraints, and the preferences of agents. By suitable choice of numeraire, we may
(and shall) suppose that the financial asset has constant value. Section 3 contains the
main part of the analysis. As is usual, we first elucidate the solutions to individual
agents’ optimization problems using the Pontryagin-Lagrange approach to identify
dual-optimal multiplier processes. Since we assume common logarithmic felicity for
all agents, the solution is remarkably complete, and we are able to make the agents’
demands quite explicit. This then allows us to pin down the equilibrium stock price
process and the equilibrium inflation using market clearing. Finally in Section 4 we
present some numerics.

This study presents examples of some rather surprising phenomena. We find an
equilibrium in which agents do not necessarily agree on the prices of all contingent
claims, but where they think a traded asset is overvalued, they are prevented by
their leverage constraints from exploiting what they see as a mispricing. Nonetheless,
we are working in a market which is in a sense complete, because the filtration is
a Brownian filtration and therefore we have the stochastic integral representation
property. Every contingent claim can be replicated, but not necessarily by a trading
strategy which respects the leverage constraints.

Throughout, we will be quite relaxed about technical conditions, such as the
difference between local martingales and martingales, the question of duality gap,
and transversality. All these are issues that have to be dealt with properly to achieve
proof; but our view is that first we should find out what the results will be if we
sidestep these issues, and then if we care to invest the effort, to determine conditions
to ensure the points we have assumed.

2 General set-up.

Throughout, we work in a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the
usual conditions, and supporting a Wiener process (Wt)t≥0. We will assume that
processes are continuous Itô processes; for simplicity, we shall assume where needed
that local martingales are in fact martingales, which would of course need to be
verified for any particular situation.
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There will be a single productive asset generating a flow (δ̃t) of consumption
good, satisfying

dδ̃t = σ̃t dWt + µ̃t dt. (1)

There are J agents in the economy, and agent j aims to maximize his objective1

Uj(c̃) ≡ Ej
[∫ ∞

0
Uj(t, c̃t) dt

]
(2)

over possible consumption streams (c̃t). Here, P j is the probability expressing agent
j’s beliefs about the world; we assume that all P j are absolutely continuous with
respect to P , with likelihood-ratio martingales

dP j

dP

∣∣∣∣
Ft

= Λjt , (3)

where Λj solves the SDE

dΛjt = λjt Λjt dWt, Λj0 = 1. (4)

In terms of Λj , the objective (2) can of course be expressed as

Uj(c) = E

[∫ ∞
0

Λjt Uj(t, c̃t) dt

]
. (5)

Whenever we are discussing the optimization problem of a single agent, for notational
simplicity we omit the label for that agent.

Now we specify what the possible consumption streams are for an agent. There
will be a financial market with two assets in it, a single infinitely-divisible share
(St), ownership of which entitles the holder to the entire stream δ̃ of consumption
good; and a financial asset (Bt) which we may think of as a bank account or bond.
Ownership of B delivers no consumption good; the process B is a continuous finite-
variation Itô process. We shall assume throughout that both S and B are strictly
positive, and that B0 = 1. There is a net supply A0 ≥ 0 of the bond2.

Financial assets are denominated in units of cash, and there is a finite-variation
price-level process (p′t)t≥0 which converts consumption-good values to cash values,
so that

δt ≡ p′tδ̃t (6)

is the cash value of the stream of consumption good. We shall use tildes to denote
processes denominated in units of consumption good.

1The utility functions Uj are all assumed C2, strictly concave, and satisfy the Inada conditions.
2We might think that the net supply of the bond could be allowed to vary with time, but as we

shall see, within the assumptions we are making this cannot happen. Nevertheless, modelling some
mechanism for (say) monetary policy choices would be an interesting extension of this study.
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The agent is going to choose a triple (n, ϕ, c) of processes linked by

wt = ntSt + ϕtBt, (7)

dwt = nt(dSt + δt dt) + ϕt dBt − ct dt, (8)

wt ≥ 0. (9)

This is the familiar specification of an admissible self-financing wealth process; nt is
the number of shares held at time t, ϕt is the number of bonds held at time t, (12)
expresses the fact that the wealth at time t is the sum of these, (13) expresses the
self-financing property that the change in wealth is the gains from trade, and (14)
is the admissibility condition that wealth should never go negative. Of course, the
initial wealth w0 of the agent is given. We shall denote by A(w0) the set of all such
achievable triples (n, ϕ, c) that can be sustained from initial wealth w0.

We are going to suppose that the agents are leverage-constrained; for some
K, L ∈ [0, 1) we demand that for all t

−ϕtBt ≤ KntSt, (10)

−ntSt ≤ LϕtBt. (11)

A special case of this would be when L = 0, which is a short-sales constraint on
the agent’s holdings of the stock and bond. If we take K = L = 1, we are back to
the admissibility constraint (14), but this is only a limiting case of the situation we
consider, since we assume that both K and L are strictly less than 1.

We observe that if we define w̄t = wt/Bt, S̄t = St/Bt, δ̄t = δt/Bt, and c̄t = ct/Bt,
then the equations (7), (8), (9) become

w̄t = ntS̄t + ϕt, (12)

dw̄t = nt(dS̄t + δ̄t dt)− c̄t dt, (13)

w̄t ≥ 0. (14)

The consumption stream c̄ measure in units of B corresponds to a consumption
stream

c̃t = Btc̄t/p
′
t. (15)

The conclusion from this is that we may take B ≡ 1 in the equations (12),(13),
so long as we understand that the price level process should be replaced by the finite-
variation process

pt ≡ p′t/Bt. (16)

To explain a bit more fully, if we have that Bt = exp(
∫ t
0 rs ds) and p′t = exp(

∫ t
0 αs ds),

then the price level process adjusted for riskless interest will be

pt = exp(

∫ t

0
(αs − rs) ds). (17)
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We shall therefore proceed under the assumption that B is identically 1 in the dy-
namics (12), (13), and refer to this asset as the bond. The process δ appearing in
(13) is related to δ̃ by

δt = ptδ̃t (18)

so that the drift µt of δ is related to the given drift µ̃t of δ̃ by

µt = µ̃t + (αt − rt). (19)

We will derive µ from equilibrium, which will tell us the equilibrium values for (α−r),
in effect, inflation once riskless interest has been accounted for. It is not possible to
separate out the values of α, r individually.

An important point to note is that δt = ptδ̃t is the product of the given output
process δ̃ and a finite-variation process, so the volatility σ of δ is in fact the given σ̃;
the volatility of δ is known, and is equal to σ̃.

We will develop the individual agent’s optimal solution at a fairly general level,
but very quickly we shall make the restrictive assumption

Uj(t, c) = U(t, c) ≡ e−ρt log c ∀j. (20)

As is readily verified, the Fenchel dual of U is

Ũ(t, y) = e−ρt
[
−1− ρt− log y

]
. (21)

By assuming log utility, we are able to solve remarkably explicitly, and indeed, when
there is no leverage constraint, this situation is completely solved in Section 4 of [2].

To summarize then, the given components of the story are the consumption
stream δ̃, the objectives Uj of the agents, and their beliefs P j . We are going to
find equilibrium solutions, that is, a price process S and a price level process p such
that if each agent optimizes his objective over achievable triples (n, ϕ, c), then the
markets clear; the consumption stream is exactly consumed, the total holdings of
shares at all times equal the unit supply, and the total holdings of the bonds at
all times equals the available supply. The first step in finding an equilibrium is of
course to consider the optimization problem of an individual agent, which we shall
solve by the Pontryagin-Lagrange method. Again for ease of exposition, we shall
assume that there is no duality gap, which is an assumption that often requires a
lot of work to justify, but this is technical backfilling of results which we think are
already intriguing.

3 Diverse agents equilibrium.

To derive the equilibrium, we use the Pontryagin-Lagrange approach, introducing a
strictly positive Lagrangian semimartingale ζ and non-negative Lagrangian processes
ξ and η to take care of the leverage constraints (10), (11). The setA(w0) of admissible
triples (n, ϕ, c) must now satisfy (10), (11) in addition to (12), (13), (14).
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Proposition 1. A triple (ζ, ξ, η) is in the dual-feasible set D if ζ is a strictly positive
continuous semimartingale and ξ, η are non-negative adapted processes such that

d(ζS) + ζS(Kη + ξ) dt+ ζδ dt is a (local) martingale; (22)

dζ + ζ(η + Lξ) dt is a (local) martingale. (23)

Assuming the transversality property

ζtwt → 0 a.s., in L1 (t→∞), (24)

the duality relationship

sup
(n,ϕ,c)∈A(w0)

U(c) ≤ inf
(ζ,ξ,η)∈D

E

[ ∫ ∞
0

ΛŨ(t, p/ζ) dt+ w0ζ0

]
(25)

holds.

Proof. If ζ is a strictly positive continuous semimartingale, and ξ, η are non-negative
adapted processes, we find that

sup
(n,ϕ,c)∈A(w0)

U(c) ≤ sup
(n,ϕ,c)∈A(w0)

E

[ ∫ ∞
0

{
ΛU(t, c/p) dt+ ζdw + wdζ + dw dζ +

+(KnS + ϕ)ζη dt+ (nS + Lϕ)ζξ dt
}

+ w0ζ0

]
. (26)

To understand why this is, notice that from the integration-by-parts formula, the
terms ζdw + wdζ + dw dζ are the differential of ζw, and because of (24) we have

w0ζ0 = −[wtζt]
∞
0 .

Thus the inclusion of these two terms on the right-hand side makes no change to
the left-hand side of (26). To understand the effect of the terms involving ξ and η,
notice that if (n, ϕ, c) ∈ A(w0), then these terms contribute something non-negative
to the right-hand side, and so we have if anything increased the objective, whence
the stated inequality.

We now use (12) and (13) to rework the right-hand side of (26), collecting terms
in n and in ϕ:

sup
(n,ϕ,c)∈A(w0)

U(c) ≤ sup
(n,ϕ,c)∈A(w0)

E

[ ∫ ∞
0

{
ΛU(t, c/p) dt− ζc dt

+n{ζ(dS + δ dt) + S dζ + dS dζ + ζS(Kη + ξ) dt}+

+ϕ{ dζ + ζ(η + Lξ) dt}
}

+ w0ζ0

]
= sup

(n,ϕ,c)∈A(w0)
E

[ ∫ ∞
0

{
ΛŨ(t, pζ/Λ) dt+

+n{d(ζ S) + ζδ dt+ ζS(Kη + ξ) dt}+

+ϕ{dζ + ζ(η + Lξ) dt}
}

+ w0ζ0

]
. (27)
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Because n and ϕ are arbitrary previsible integrands, we deduce the dual-feasibility
conditions (22), (23), and (25) follows immediately.

If the inequality (25) is strict, then we say there is a duality gap. If there is a
duality gap, there is little we can do. Verifying that there is no duality gap usually
requires some careful analysis exploiting the explicit features of the situation under
consideration. We shall avoid this here, by simply assuming that there is no duality
gap, that is, (25) holds with equality. This will take us directly to some interesting
results without a long and dreary technical detour.

3.1 Finding the dual-optimal multipliers.

We now suppose that ζ and S have dynamics

dζt = −ζt (at dWt + bt dt), (28)

dSt = St(vt dWt +mt dt). (29)

Proposition 2. Under our assumptions of no duality gap, and the transversality
relation (24), the dual-optimal choices for a, b are

ā =
M + z+p − z−m

v
, (30)

b̄ =
Lz+p

1− L
+

z−m
1−K

, (31)

where

zp = −M − λv − Lv2

1− L
, (32)

zm = −M − λv +
v2

1−K
, (33)

and M ≡ m+ δ/S. Moreover, v > 0 and

ζ0 = 1/ρw0. (34)

Proof. By considering the drifts of (22), (23) we deduce that the dual-feasibility
conditions are

0 = M − av − b+Kη + ξ, (35)

0 = −b+ η + Lξ, (36)

where
M ≡ m+ δ/S. (37)

We can now solve the linear equations (35) and (36) to learn that

a =
M + z

v
, (38)

b =
z−

1−K
+

Lz+

1− L
, (39)
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where
z ≡ (1− L)ξ − (1−K)η. (40)

Recall that the dual variables ξ, η are required to be non-negative, so z can take any
real value. The positive and negative parts of z tell us ξ and η.

Under the assumption of no duality gap,

sup
(n,ϕ,c)∈A(w0)

U(c) = inf
(ζ,ξ,η)∈D

E

[ ∫ ∞
0

ΛtŨ(t, ptζt/Λt) dt+ w0ζ0

]
. (41)

From the assumed logarithmic form (20) of the felicity, the expression to be mini-
mized over ζ is

E

[∫ ∞
0
−Λte

−ρt log ζt dt+w0ζ0

]
= E

[∫ ∞
0

e−ρt{ 1
2
a2t+λtat+bt} dt+w0ζ0−ρ−1 log ζ0

]
(42)

from (28) and the Cameron-Martin-Girsanov effect of change of measure as change
of drift. The equation (34) follows from this by simple calculus. Now if we write
Q ≡ 1

2
a2 + λa+ b, we have from (38) and (39) that

dQ

dz
=

λ+ a

v
+

L

1− L
I{z>0} −

1

1−K
I{z<0}

=
λ

v
+
M

v2
+

z

v2
+

L

1− L
I{z>0} −

1

1−K
I{z<0}. (43)

Inspection of (43) shows that the gradient of Q is increasing in z, with an upward
jump at z = 0.

Thus, defining zp, zm as at (32), (33), we notice that zm > zp; that if zp > 0
then z = zp minimizes Q; that if zm < 0 then z = zm minimizes Q; and otherwise
the minimizing choice of z is 0. Notice also that zp > 0 if and only if ξ > 0, which
implies that the constraint (11) is tight; the agent is as short of the stock as he can
be. Since this is what would be expected for an agent whose value of λ is low, we
deduce that we will always have

v > 0. (44)

Altogether then, the minimizing values of a, b are

ā =
M + z+p − z−m

v
,

b̄ =
Lz+p

1− L
+

z−m
1−K

,

and this (together with (34)) identifies the agent’s dual-optimal choice of ζ. The
agent takes the dynamics of S as given, therefore v and M are known to the agent,
as is his likelihood-ratio drift λ, so ā and b̄ are known to the agent, and therefore this
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recipe is completely explicit. Importantly, since agents have different λ, they do not
in general have the same state-price density process ζ; agents who are not leverage-
constrained (that is, zp < 0 < zm) have common values of ā, b̄. A consequence of
this is that the agents do not agree on the prices of contingent claims at all times;
however, when there is disagreement, an agent who thinks that an asset is valued
too cheaply is not able to exploit this because he is leverage-constrained, and may
not borrow more cash to buy more of the share he thinks is undervalued.

3.2 Agent demands.

The optimization over c which gave us (27) tells us that

ct =
e−ρtΛt
ζt

, (45)

so we have the key relation
ζtct = e−ρtΛt. (46)

Although agents may not always all agree that market assets are correctly priced,
each agent believes that his future consumption is correctly priced. To see why, we
reprise the analysis that took us to (27), making use of (22), (23):

d(ζw) = ζ dw + w dζ + dw dζ

= ζn(dS + δ dt)− ζc dt+ (nS + ϕ)dζ + ndS dζ +

= nd(ζS) + ζδ dt+ ϕdζ − ζc dt
.
= −nζS(Kη + ξ)dt− ϕζ(η + Lξ)dt− ζc dt
= −ζη(KnS + ϕ)dt− ζξ(nS + Lϕ)dt− ζc dt
= −ζc dt,

where
.
= signifies that the two sides differ by a (local) martingale. The final step

comes from complementary slackness. Therefore

Mt ≡ ζtwt +

∫ t

0
ζscs ds is a non-negative (local) martingale.

Assuming that M is in fact a martingale, and that (24) holds, we deduce that

ζtwt = Et

[∫ ∞
t

ζucu du

]
. (47)

Using (46) gives us that
ζtwt = ρ−1e−ρtΛt,

whence

ct = ρwt =
e−ρtΛt
ζt

. (48)
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This allows us to find the agent’s demand nt for the stock, and ϕt for the bond.
Indeed, from (48), (28), and (4) we have

dwt
wt

= −ρdt+ λt dWt + at dWt + ( bt + a2t + atλt ) dt, (49)

which we compare with (13) to discover that

nSv = (a+ λ)w, (50)

nSM = w( b+ a2 + aλ ). (51)

3.3 Market clearing.

The analysis of this section has so far focused on a single agent, so to lighten notation
we have omitted the label of the agent, but now we need to reintroduce that label to
discuss market clearing. Market clearing of the consumption good market requires
that ∑

j

cjt = δt = ρ
∑
j

wjt , (52)

using (48). From (12) we have also that∑
j

wjt =
∑
j

{
njtSt + ϕjt

}
= St +A0 = δt/ρ, (53)

using (52). Similarly, from (13) we conclude that∑
j

dwj = dS,

which explains why we have insisted that the supply of bonds is constant - the
analysis shows that it has to be, and indeed there would be no economic reason for
the supply to change without introducing some further element into the modelling.

By taking the Itô expansion of the last two terms in (53), and matching the terms
in dWt and in dt, we learn that

vtSt = σtδt/ρ, (54)

mtSt = µtδt/ρ. (55)

However, if we take (50), (51) and sum over all the agents, we obtain alternative
expressions:

vtSt =
∑
j

wjt (a
j
t + λjt ), (56)

MtSt =
∑
j

wjt (b
j
t + ajt (a

j
t + λjt )), (57)

where the variables ajt , b
j
t are expressed in terms of Mt and vt by (30) and (31).
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4 Simulation.

In principle, market clearing should determine the equilibrium price process S, and
the price-level process p, but the equations to be solved are sufficiently complicated
that closed-form solution is not generally possible. So in this section we make a
computational study of the equilibria which arise.

We suppose that the process δ̃ and its associated volatility σ̃ and drift µ̃ are
given and known, as are the processes λj in the definition of the beliefs P j of the
agents. As we remarked earlier, since δt = ptδ̃t and p is a finite-variation process, the
volatility σt = σ̃t is therefore known, but the drift of δ is not. The total supply of
bonds A0 is given. The initial values wj0 of the agents’ wealths are given and satisfy
the clearing condition (53), and the initial value S0 is given, and is consistent with
(53). In view of (34), we have that ζj0 = 1/ρwj0 for all j.

The simulation is going use a simple first-order Euler scheme to evolve the pro-
cesses S, µ, wj , Λj , ζj , while at the same time evolving the processes δ, σ, and λj in
accordance with the given recipes. So we suppose that we have reached time t and
have calculated St, w

j
t , Λjt , ζ

j
t ; the goal now is to make a small step forward to time

t′ = t+h > t. The increment ∆W of the driving Brownian motion is simulated, and
is used to create the increments of the various processes.

To generate the change in S we shall need (see (29)) vt and mt. We get vt from
(54), we will explain shortly where we get mt. To generate the change in ζj , we
need (see (28)) ajt and bjt , which are derived from (30), (31). This is not immediately
available, because we do not know M . However, upon inspection of (32), (33),
(30) we see that each aj is a continuous non-decreasing piecewise-linear function of
M , so we adjust M until the clearing condition (56) is satisfied, and this gives us
M = m+ δ/S, whence m follows. Having found M , we now know all the aj and bj ,
so we can make the next step of the ζj . We can make the next steps of Λj because
the processes λj were given to us. In order to step δ forward, we need to know µt,
which we derive from (55).

4.1 Constant σ̃, µ̃, λj.

As a first example, we can consider a situation where the volatility and drift of the
output process δ̃ are constant, and each agent has a fixed and constant opinion on
what the drift in δ̃ is. We present in Figures 1 and 2 some plots of the solution for a
typical example. We notice from (53) that if A0 is zero then S is a multiple of δ, and
therefore has the same volatility and drift. Looking back at (19), we see that the
plot of inflation α− r would then just be a shift of the plot of µ = m, so the second
and third plots in Figure 1 would look the same. While they have similar shape,
they are not the same, because of the parameter choice S0/A0 = 0.7. A consequence
of such a relatively large value of A0 is that δ cannot become too small - see (53).
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There is no reason why δ̃ cannot get arbitrarily close to zero, so the only way that
could happen is if inflation became arbitrarily large.

Observe (see Figure 2)that the most optimistic agent (in red) does at times take
on the largest possible amount of stock, subject to his leverage constraint; likewise,
the most pessimistic agent (in blue) does at times take on as little of the stock as
his leverage constraint allows.

4.2 Bayesian agents.

An interesting variant of the dynamics (1) of δ̃ arises when we suppose that the drift
µ̃ is not constant but is instead an OU process centred at µ̄, so that

dµ̃ = σµ dW
′ + β(µ̄− µ̃) dt (58)

for some Brownian motion W ′ independent3 of W , and β > 0. Working in the
observation filtration of the process δ̃, the standard Kalman filtering story (see, for
example, Chapter VI.9 in [6]) tells us that

dδ̃/δ̃ = σ̃ dŴ + µ̂ dt, (59)

dµ̂ = κ dŴ + β(µ̄− µ̂) dt, (60)

where
κ =

√
β2σ̃2 + σ2µ − βσ̃ (61)

and Ŵ is the innovations Brownian motion. Since the only change from the constant
case in Section 4.1 is in the drift of δ̃, the dynamics of δ (which is the output stream
denominated in units of the numeraire B) evolves exactly as before, and when we
come to calculate the effect on inflation (19), the drift µ̃ is no longer constant, but
is calculated from the evolution (60), using the simulated increments of δ.

An example of this is shown in Figure 3, when σµ = 0.9, µ̄ = 0.05, and β = 1.
Notice that the top two panels coincide with the top two panels of Figure 1, but the
third panel, the inflation plot, is different, as would be expected.

3Constant correlation is not hard to handle, but adds little to the story.
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Figure 1: Plot of S, m, and inflation for constant growth rate µ̃ = 0.05.
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Figure 2: Agents’ holdings and wealth for constant growth rate µ̃ = 0.05.
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Figure 3: Agents’ holdings and wealth for OU growth rate.
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